Electronic Health Records Based Prediction of Future Incidence of Alzheimer’s Disease Using Machine Learning

Ji Hwan Parka, Han Eol Chob, Jong Hun Kimg, Melanie Walld, Yaakov Sternc,d, Hyunsun Limf, Shinjae Yooa, Hyoung-Seop Kimg, Jiook Chadh

a Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, USA;
b Department of Rehabilitation Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea;
c Department of Neurology, Dementia Center, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
d Department of Psychiatry, Columbia University, New York, USA;
e Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA;
f Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
g Department of Physical Medicine and Rehabilitation, Dementia Center, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
h Data Science Institute, Columbia University, New York, USA.
Affordable EHR for Screening Alzheimer’s disease (AD)

- Biomarkers - the collection of bio-specimen (e.g., serum or fluid) or imaging data
 - Time consuming

- Electronic health records (EHR)
 - not require additional time or effort for data collection
 - Increase the size of EHR data due to digitalization
Overview of EHR
A few predefined features

• In prior work, predefined features
 • sociodemographic (age, sex, education)
 • lifestyle (physical activity)
 • midlife health risk factors (systolic blood pressure, BMI and total cholesterol level)
 • cognitive profiles

• Multi-factor models best predict risk for dementia

⇒ Machine learning
Machine learning on high-dimensional EHR

- Use a large nationally representative (South Korea) sample cohort

- Construct and validate data-driven machine learning models to predict future incidence of AD using the extensive measures collected within high-dimensional EHR

- Demonstrate the feasibility of developing accurate prediction models for AD
Korean EHR data

• Korean National Health Insurance Service - National Elderly cohort Database

• 6,435 features

• 430,133 individuals (> 65 yrs, 10% sample of randomly selected elderly individuals)

• 2002 – 2010, South Korea
High-dimensional Features

National Elderly cohort Database (DB)

<table>
<thead>
<tr>
<th>Health Screening (HS) DB</th>
<th>Participant Insurance Eligibility (PIE) DB</th>
<th>Healthcare Utilization (HU) DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Features: laboratory values, health profiles, history of family illness</td>
<td>2 Features: sex, age</td>
<td>6,412 features including ICD-10 codes and medication codes</td>
</tr>
</tbody>
</table>
Machine learning analysis

• Input: High-dimensional EHR data

• Methods
 • Random forest, support vector machine (SVM), logistic regression

• Task: Can machine learning be used to predict future incidence of Alzheimer’s disease using electronic health records?
Definition of data

• Two criteria
 • (Korean) ICD-10 code:
 • Dementia in AD - F00, F00.0, F00.1, F00.2, F00.9
 • AD - G30, G30.0, G30.1, G30.8, G30.9
 • Dementia medication: e.g., donepezil, rivastigmine, galantamine, and memantine

• **Definite AD**: ICD-10 code + medication

• **Probable AD**: only ICD-10
Data range for n-year prediction

• AD group: between 2002 and the year of incident AD – n
• Non-AD group: 2002 to 2010 – n

Example:

Non-AD: 2002 2003 2004 2005 2006 2007 2008 2009 2010
AD (1yr): 2002 2003 2004 2005 2006 2007 2008 2009 2010
AD (2yr): 2002 2003 2004 2005 2006 2007 2008 2009 2010
AD (3yr): 2002 2003 2004 2005 2006 2007 2008 2009 2010
AD (4yr): 2002 2003 2004 2005 2006 2007 2008 2009 2010

AD

Non-AD:
Data Preprocessing

• EHR alignment

• ICD-10 and medication coding
 • the first disease category codes: e.g., F00.0
 • the first 4 characters for the medication codes representing main ingredients: e.g., 149801ATB

• Rare disease exclusion (\(\leq 5\))

• Records exist in all the three databases (HS, PIE,HU)
of data samples

- **430,133** elderly individual
- **389,349** excluded
 - Not in HS DB
- **40,736** individual
 - In all DBs
- **Probable AD: 2,026** individual
 - Definite AD: **614** individual
- **Non-AD: 38,710** individual
Sample characteristics

<table>
<thead>
<tr>
<th></th>
<th>Definite AD</th>
<th>Probable AD</th>
<th>Non-AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>614</td>
<td>2,026</td>
<td>38,710</td>
</tr>
<tr>
<td>Income</td>
<td>$ 60k ($57.3k-$62.7k)</td>
<td>$59k ($58.7k-$59.3k)</td>
<td>$60.2k ($58.7k-$61.7k)</td>
</tr>
<tr>
<td>Age</td>
<td>80.67 (80.2-81.1)</td>
<td>79.2 (79.0-79.5)</td>
<td>74.5 (74.4-74.5)</td>
</tr>
<tr>
<td>sex</td>
<td>Male:229 (37%)</td>
<td>Male:733 (36%)</td>
<td>Male:18,200 (47%)</td>
</tr>
<tr>
<td></td>
<td>Female:285 (63%)</td>
<td>Female:1,293 (64%)</td>
<td>Female:20,510 (53%)</td>
</tr>
</tbody>
</table>

Based on the 0-year prediction model.
N-year prediction for definite AD
N-year prediction for probable AD

![Graph showing the AUC over different year predictions for probable AD.](image)
Model prediction result - ROC

Receiver-Operating Characteristics

Definite AD

Probable AD

Sensitivity

Specificity

0 yr
1 yr
2 yr
3 yr
4 yr

0 yr
1 yr
2 yr
3 yr
4 yr
Important features

<table>
<thead>
<tr>
<th>Name</th>
<th>b value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hemoglobin (H)</td>
<td>-0.902</td>
</tr>
<tr>
<td>Age (Demo)</td>
<td>0.689</td>
</tr>
<tr>
<td>Urine protein (H)</td>
<td>0.303</td>
</tr>
<tr>
<td>Zotepine (antipsychotic drug) (M)</td>
<td>0.303</td>
</tr>
<tr>
<td>Nicametate Citrate (vasodilator) (M)</td>
<td>-0.297</td>
</tr>
<tr>
<td>Other degenerative disorders of nervous system in diseases</td>
<td>-0.292</td>
</tr>
<tr>
<td>classified elsewhere (D)</td>
<td></td>
</tr>
<tr>
<td>Disorders of external ear in diseases classified elsewhere (D)</td>
<td>0.274</td>
</tr>
<tr>
<td>Tolfenamic acid 200mg (pain killer) (M)</td>
<td>0.266</td>
</tr>
<tr>
<td>Adult respiratory distress syndrome (D)</td>
<td>-0.259</td>
</tr>
<tr>
<td>Eperisone Hydrochloride (antispasmodic drug) (M)</td>
<td>0.255</td>
</tr>
</tbody>
</table>

(H): Health checkup
(M): Medication
(Demo): Demographics
(D): Disease
Summary (1)

- Our model AUC: 0.887 (0yr), 0.781 (1yr), 0.662 (4yr)
- Prior models AUC: 0.5 ~ 0.78
- Detected interesting EHR-based features associated with incident AD
Summary (2)

- Presents the first data in predicting future incident AD using data-driven machine learning based on large-scale EHR

- Support to the development of EHR-based AD risk prediction that may enable better selection of individuals at risk for AD in clinical trials or early detection in clinical settings
Future work

• Generalize our findings to ethnicities other than Korean or to different healthcare systems

• Apply deep neural networks such as a recurrent neural network (RNN)
Model prediction results (1)

<table>
<thead>
<tr>
<th></th>
<th>Classifier*</th>
<th>AD/non-AD</th>
<th>AUC</th>
<th>Sensitivity** (when 90% specificity)</th>
<th>Specificity** (when 90% Sensitivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 yr</td>
<td>RF</td>
<td>614/38,710</td>
<td>0.887</td>
<td>0.687</td>
<td>0.737</td>
</tr>
<tr>
<td>1 yr</td>
<td>SVM</td>
<td>672/38,967</td>
<td>0.781</td>
<td>0.380</td>
<td>0.475</td>
</tr>
<tr>
<td>2 yr</td>
<td>SVM</td>
<td>640/38,605</td>
<td>0.739</td>
<td>0.281</td>
<td>0.400</td>
</tr>
<tr>
<td>3 yr</td>
<td>SVM</td>
<td>605/29,983</td>
<td>0.686</td>
<td>0.227</td>
<td>0.291</td>
</tr>
<tr>
<td>4 yr</td>
<td>RF</td>
<td>491/14,196</td>
<td>0.662</td>
<td>0.000</td>
<td>0.151</td>
</tr>
</tbody>
</table>

*best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%. LR, logistic regression; RF, random forest; SVM, support vector machine
Model prediction results (2)

<table>
<thead>
<tr>
<th>Probable AD (AD codes)</th>
<th>Classifier*</th>
<th>AD/non-AD</th>
<th>AUC</th>
<th>Sensitivity** (when 90% specificity)</th>
<th>Specificity** (when 90% Sensitivity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 yr</td>
<td>RF</td>
<td>2,026/38,710</td>
<td>0.805</td>
<td>0.240</td>
<td>0.456</td>
</tr>
<tr>
<td>1 yr</td>
<td>RF</td>
<td>2,049/38,967</td>
<td>0.730</td>
<td>0.170</td>
<td>0.338</td>
</tr>
<tr>
<td>2 yr</td>
<td>LR</td>
<td>1,892/38,605</td>
<td>0.645</td>
<td>0.136</td>
<td>0.301</td>
</tr>
<tr>
<td>3 yr</td>
<td>LR</td>
<td>1,697/29,983</td>
<td>0.575</td>
<td>0.085</td>
<td>0.253</td>
</tr>
<tr>
<td>4 yr</td>
<td>RF</td>
<td>1,412/14,196</td>
<td>0.602</td>
<td>0.020</td>
<td>0.018</td>
</tr>
</tbody>
</table>

*best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%. LR, logistic regression; RF, random forest; SVM, support vector machine