Risk in power grids

Daniel Bienstock

Columbia University

NYSDS 2020

The challenge: power grids under change

- Power grids are getting *old*, and replacing all assets is too expensive, even as demands grow
- Renewables are mandated/desirable, can reduce (!) costs but also introduce *variability*
- Other disruptive technologies: "smart loads", "demand response"
- Power grids are likely to become more *local* as individuals/neighborhoods/towns invest in their own assets (batteries, renewables)
- Large, real-time *variability* recognized as an issue: the grid is not built to handle it
- Many opportunities for mathematics and computing

Power engineering for non-power engineers

A generator produces **current** at a given **voltage**. $\omega \approx 60 Hz$

Ohm's law: power = current x voltage

A traditional power system

... many missing details ...

AC Power Flows

Real-time:

- Voltage at bus k: $v_k(t) = V_k^{max} \cos(\omega t + \theta_k^V) = V_k^{max} \mathcal{R}e^{j(\omega t + \theta_k^V)}$
- Current injected at k into km: $i_{km}(t) = I_{km}^{max} \cos(\omega t + \theta_{km}^{I})$.
- Power injected at k into km: $p_{km}(t) = v_k(t)i_{km}(t)$.

Averaged over period T:

•
$$p_{km} \doteq \frac{1}{T} \int_0^T p(t) = \frac{1}{2} V_k^{max} I_{km}^{max} \cos(\theta_k^V - \theta_{km}^I).$$

•
$$p_{km} \doteq \frac{1}{T} \int_0^T p(t) = \frac{1}{2} V_k^{max} I_{km}^{max} \cos(\theta_k^V - \theta_{km}^I)$$

• $v_k(t) = V_k^{max} \operatorname{Re} e^{j(\omega t + \theta_k^V)}, \quad i_{km}(t) = I_{km}^{max} \operatorname{Re} e^{j(\omega t + \theta_{km}^I)}$

$$V_{k} \doteq \frac{V_{k}^{max}}{\sqrt{2}} e^{j\theta_{k}^{V}}, \quad I_{km} \doteq \frac{I_{km}^{max}}{\sqrt{2}} e^{j\theta_{mk}^{J}}$$

•
$$p_{km} = |V_k||I_{km}|\cos(\theta_k^V - \theta_{km}^I) = \mathcal{R}e(V_k I_{km}^*)$$

•
$$q_{km} \doteq Im(V_{km}I_{km}^*)$$
 and $S_{km} \doteq p_{km} + jq_{km}$

•
$$V_k \doteq \frac{V_k^{max}}{\sqrt{2}} e^{j\theta_k^V}$$
, $I_{km} \doteq \frac{I_{km}^{max}}{\sqrt{2}} e^{j\theta_{mk}^I}$ (voltage, current)
 $p_{km} = \mathcal{R}e(V_k I_{km}^*)$, $q_{km} = Im(V_{km} I_{km}^*)$ (1)

$$I_{km} = \mathbf{y}_{\{k,m\}}(V_k - V_m), \quad \mathbf{y}_{\{k,m\}} = admittance \text{ of } km. \tag{2}$$

Network Equations

•
$$V_k \doteq \frac{V_k^{max}}{\sqrt{2}} e^{j\theta_k^V}$$
, $I_{km} \doteq \frac{I_{km}^{max}}{\sqrt{2}} e^{j\theta_{mk}^I}$ (voltage, current)
 $p_{km} = \mathcal{R}e(V_k I_{km}^*)$, $q_{km} = Im(V_{km} I_{km}^*)$ (3)

$$I_{km} = \mathbf{y}_{\{\mathbf{k},\mathbf{m}\}}(V_k - V_m), \mathbf{y}_{\{\mathbf{k},\mathbf{m}\}} = admittance \text{ of } km.$$
(4)

Network Equations

$$\sum_{km\in\delta(k)}p_{km} = \hat{P}_k, \quad \sum_{km\in\delta(k)}q_{km} = \hat{Q}_k \quad \forall k$$
(5)

Generator: $\hat{P}_k, |V_k|$ given. Other buses: \hat{P}_k, \hat{Q}_k given.

 $\sum_{km \in \delta(k)} \left[\boldsymbol{g_{km}}(|V_k|^2) - \boldsymbol{g_{km}}|V_k| |V_m| \cos(\theta_k - \theta_m) - \boldsymbol{b_{km}}|V_k| |V_m| \sin(\theta_k - \theta_m) \right]$

 $= \hat{\boldsymbol{P}}_{\boldsymbol{k}}$ $\sum_{\boldsymbol{k}m \in \delta(\boldsymbol{k})} \left[-\boldsymbol{b}_{\boldsymbol{k}m}(|\boldsymbol{V}_{\boldsymbol{k}}|^2) + \boldsymbol{b}_{\boldsymbol{k}m}|\boldsymbol{V}_{\boldsymbol{k}}||\boldsymbol{V}_{\boldsymbol{m}}|\cos(\theta_{\boldsymbol{k}} - \theta_{\boldsymbol{m}}) - \boldsymbol{g}_{\boldsymbol{k}m}|\boldsymbol{V}_{\boldsymbol{k}}||\boldsymbol{V}_{\boldsymbol{m}}|\sin(\theta_{\boldsymbol{k}} - \theta_{\boldsymbol{m}}) \right]$

$$egin{array}{lll} &= \hat{oldsymbol{Q}}_{oldsymbol{k}} \ (oldsymbol{V}_{oldsymbol{k}})^2 &\leq & |V_k|^2 &\leq & (oldsymbol{V}_{oldsymbol{k}})^2, \end{array}$$

for each bus $\boldsymbol{k} = 1, 2, \ldots$

Also: an optimization version

- Minimize cost of operation
- Additional decisions: modify line attributes, requires binary variables

Exploring the Power Flow Solution Space Boundary

Ian A. Hiskens, Senior Member and Robert J. Davy

Fig. 6. Three bus system.

Fig. 13. Solution space, P1-Q2-P2 view.

ACOPF (1960s)

min

$$\sum_{k \in G} C_k(G_k)$$

$$\sum_{km \in \delta(k)} \left[\mathbf{g}_{\mathbf{km}}(|V_k|^2) - \mathbf{g}_{\mathbf{km}}|V_k||V_m|\cos(\theta_k - \theta_m) - \mathbf{b}_{\mathbf{km}}|V_k||V_m|\sin(\theta_k - \theta_m) \right]$$

$$= \hat{\mathbf{P}}_k$$

$$\sum_{km \in \delta(k)} \left[-\mathbf{b}_{\mathbf{km}}(|V_k|^2) + \mathbf{b}_{\mathbf{km}}|V_k||V_m|\cos(\theta_k - \theta_m) - \mathbf{g}_{\mathbf{km}}|V_k||V_m|\sin(\theta_k - \theta_m) \right]$$

$$= \hat{\mathbf{Q}}_k$$

$$(\mathbf{V}_k^{\min})^2 \leq |V_k|^2 \leq (\mathbf{V}_k^{\max})^2,$$

for each bus $\pmb{k}=1,2,\ldots$

Here:

- G = set of generators, G_k = power generated at generator k, C_k = cost function at k.
- Some simple constraints missing
- Some complex features ommitted

$$\begin{split} \sum_{km \in \delta(k)} \left[\boldsymbol{g}_{\boldsymbol{km}}(|V_k|^2) - \boldsymbol{g}_{\boldsymbol{km}}|V_k||V_m|\cos(\theta_k - \theta_m) - \boldsymbol{b}_{\boldsymbol{km}}|V_k||V_m|\sin(\theta_k - \theta_m) \right] \\ &= \hat{\boldsymbol{P}}_k \\ \sum_{km \in \delta(k)} \left[-\boldsymbol{b}_{\boldsymbol{km}}(|V_k|^2) + \boldsymbol{b}_{\boldsymbol{km}}|V_k||V_m|\cos(\theta_k - \theta_m) - \boldsymbol{g}_{\boldsymbol{km}}|V_k||V_m|\sin(\theta_k - \theta_m) \right] \\ &= \hat{\boldsymbol{Q}}_k \\ (\boldsymbol{V}_k^{\min})^2 &\leq |V_k|^2 \leq (\boldsymbol{V}_k^{\max})^2, \end{split}$$

for each bus $k = 1, 2, \ldots$

Mathematics, anyone?

- Log-barrier methods: compute numerical solutions. But: no guarantees. Modern versions of the problem quite challenging in large-scale cases. 5 × 10⁴ buses → 10⁶ (or more) variables
- Rigorous theory for solution of semi-algebraic problems.
 Sums-of-squares, SOCPs, RLT, MINLP. Improving, but "not there" yet.

How is this actually used? - a simplified view

Day-ahead computation

- Goal is to decide when to operate each generator, and to what extent
- Uses an (e.g.) hourly profile of demand estimates
- Also outputs economic information ("location marginal prices")
- Linearized optimization model

Shorter time frame computation

- This is run e.g. every five minutes
- Corrects generator output levels
- Uses more accurate demand estimates
- Also linearized optimization model

In the second second of the second second

Managing changing demands

What happens when there is a generation/load mismatch

Frequency response:

mismatch $\Delta P \Rightarrow$ frequency change $\Delta \omega \approx -c \Delta P$

AGC, primary and secondary response (simplified!, abridged!)

Suppose generation vs loads balance spontaneously changes (i.e. a net imbalance)?

- AC frequency changes proportionally (to first order) near-instantaneously
- **Primary response.** (very quick) Inertia in generators contributes electrical energy to the system
- Secondary response. (seconds) Suppose estimated generation shortfall = Δ*P*. Then:

Generator \boldsymbol{g} changes output by $\alpha_{\boldsymbol{g}} \Delta \boldsymbol{P}$

- $\sum_{g} \alpha_{g} = 1$, $\alpha \geq 0$, $\alpha > 0$ for "participating" generators
- Preset participation factors
- $\Delta \omega$ sensed by control center, which issues generator commands

AGC, primary and secondary response (simplified!, abridged!)

Suppose generation vs loads balance spontaneously changes (i.e. a net imbalance)?

- AC frequency changes proportionally (to first order) near-instantaneously
- **Primary response.** (very quick) Inertia in generators contributes electrical energy to the system
- Secondary response. (seconds) Suppose estimated generation shortfall = ΔP. Then:

Generator \boldsymbol{g} changes output by $\alpha_{\boldsymbol{g}} \Delta \boldsymbol{P}$

- $\sum_{g} \alpha_{g} = 1$, $\alpha \geq 0$, $\alpha > 0$ for "participating" generators
- Preset participation factors
- $\Delta \omega$ sensed by control center, which issues generator commands

AGC, primary and secondary response (the future)

Suppose generation vs loads balance spontaneously changes (i.e. a net imbalance)?

- AC frequency changes proportionally (to first order) near-instantaneously
- **Primary response.** (very quick) Inertia in generators contributes electrical energy to the system
- Secondary response. (seconds) Suppose estimated generation shortfall = ΔP. Then:

Generator, or battery, or photovoltaic g changes output by $\alpha_g \Delta P$

- $\sum_{g} \alpha_{g} = 1$, $\alpha \geq 0$, $\alpha > 0$ for "participating" generators
- Preset participation factors
- $\Delta \omega$ sensed by control center, which issues generator commands

What is **risk**?

- **Traditional risk.** A (single) **generator outage** or **line outage** event constitutes risk. Accounted for in day-ahead computation.
- Novel risk. Shorter time-frame unusual demand/generation patterns imperil balancing (AGC).
 - If real-time imbalances are large and *inconveniently located*, balancing capabilities may be insufficient
 - Real-time volatility (i.e. "variability") can be especially tricky rapid, large, back-and-forth changes
 - Adversarial potential? Not just bad actors, but also arbitrage potential. Intelligent behavior that works against system safety
 - Power systems are inherently nonlinear a large infeasible behavior, even if brief, can lead to a large collapse (e.g. generator tripping)
 - Local control and generation can add flexibility and better economics, but also removes protection provided by system inertia

From a current California ISO document:

" \ldots the system may be ill prepared to respond to large amounts of uncertainty when they materialize in real time."

- Endogenous variance + response variance causes system-wide variance
- Variability in physical quantities (voltages, frequency) could become problematic
- From other industries: reducing system variance should be an operational goal unto itself
- Should design balancing structure (the α_g) in a variance-aware fashion

The future: variance-aware power system computations

$$\min \sum_{k \in G} C_k(G_k) + \underbrace{F(\text{system variance})}_{\text{cost of variance}}$$

$$\sum_{km \in \delta(k)} \left[\mathbf{g}_{km}(|V_k|^2) - \mathbf{g}_{km}|V_k||V_m|\cos(\theta_k - \theta_m) - \mathbf{b}_{km}|V_k||V_m|\sin(\theta_k - \theta_m) \right]$$

$$= \hat{P}_k$$

$$\sum_{km \in \delta(k)} \left[-\mathbf{b}_{km}(|V_k|^2) + \mathbf{b}_{km}|V_k||V_m|\cos(\theta_k - \theta_m) - \mathbf{g}_{km}|V_k||V_m|\sin(\theta_k - \theta_m) \right]$$

$$= \hat{Q}_k$$

$$(V_k^{\min})^2 \leq |V_k|^2 \leq (V_k^{\max})^2,$$

for each bus $\boldsymbol{k}=1,2,\ldots$

Here:

- G = set of generators, G_k = power generated at generator k, C_k = cost function at k.
- Balancing mechanism is part of the optimization (ommitted)
- Model for exogenous variance in loads/generation is assumed
- Needed: equations connecting response to exogenous variance

The future: financial instruments for variance control

- **Example:** the owner of a battery bank, at a price, enters into an agreement with a utility (or ISO) to provide variance reduction (up to a point) during a period of interest
- This is **not** standard balancing: there is a triggering condition and it is up to a point
- Similar to, e.g. variance swaps
- The utility, or ISO, could enter into several similar contracts, each covering a different *tranche* of volatility
- Other ideas: derivative contracts, hedging
- Pricing?
- What is variance?

The future: correlation structure recognition, in real-time

 \rightarrow Learn covariance structure as it changes

- PMUs, now and future: very fast sensors (report 100 times per second)
- Will become ubiquitous
- Vast data streams!
- Real-time recognition of *changes* in variance and correlations important
- Approximate PCA, in real time, in a high-dimensional setting
- Some theoretical tools: the noisy power method, and beyond
- Also need to be adversarial, and to anticipate changes

Thanks

ARPA-E funded programs:

- GO competition
- PERFORM program

Kory Hedman, Joe King, Richard O'Neill