RUTGERS

Cyber-Physical Systems for Smart Cities: A Mobility Perspective

Desheng Zhang

Computer Science Rutgers University Citywide Vehicular Mobility

Urban Mobile CPS

Urban Mobile CPS

Contributions 2018-2020

Knowledge

Systems

Measure & Predict

Models

- Privacy [Ubicomp 20-1]
- Locations [Ubicomp 19-1] [MobiCom 19-2]
- Energy [Ubicomp 20-4] [MobiCom 19-1]
- Behavior [Ubicomp 20-2]
- Routes [Ubicomp 20-3]
- Volume [WWW 20]
- Time [Ubicomp 19-2]
- Speed [SenSys 18] Jaka
 - Distance [Ubicomp 18-2]

Intervene & Alter

Food Delivery [NSDI 21, MobiCom20]

Services

- Charging [RTSS 18]
- Ridesharing[Ubicomp 18-4]
- Rebalancing [Ubicomp 18-3]
- Dispatching [WWW 19]
- Navigation [ICCPS 18]
- Planning [ICDCS 19]
- Transferring [Smartcomp 18] weedback
- Parking [Ubicomp 18]

Advancing State-of-the-Arts

MobiCom 2019 The 25th Annual International Conference on Mobile Computing and Networking

VeMo

Enabling Transparent Vehicular Mobility Modeling at an Individual Level with Full Penetration

Yu Yang, X. Xie, Z. Fang, F. Zhang, Desheng Zhang

Background: Vehicle Localization

What if we know

All Vehicles' Locations in Real Time?

Location-based Services

Anomaly Detections

Sensing for Autonomous Driving

Goal: Real-time Locations for all Vehicles

• All Vehicles (without GPS)

10/31

State of the Arts

Approach	Mobile Sensing	Stationary Se	ensing
Onjective	Smartphone (e.g. Google Map)	Traffic Cameras Lo	toop Sensors
Aggregate 3 A B	R.Balan[MobiSys'11] J.Aslam[SenSys'12] D.Zhang[MobiCom'14]	S.Zhang[ICCV'17] Z.Qin[SenSys'18] Y.Yang[UbiComp'18]	
Individual	A.Thiagarajan[SenSys'09] D.Zhang[SenSys'13] X.Gao[UbiComp'14]	Partial Penetration	Full Penetration
		A.T. [NSDI'11] Z.Yang [MobiSys'16]	?

Opportunities of ETC-based Sensing

- Ubiquitous
 - 45% Countries
- Low Cost
 - No additional infrastructure
- Low Privacy Risk
 - No GPS and No Camera
- Full Penetration
 - All Vehicles

		A	
Guangzhou- Road Netv	Foshan work		

Field	Value
Entering/Exit Toll Station	Humen Station
Entering/Exit Time	2016-07-01 13:00:01
Vehicle Id	F37SS1D4GU
Vehicle Type	Car/Bus/Truck
Axis Count	2
Weight	1500kg

Number of Daily Transactions: 4 millions Number of Daily Vehicles: 2 millions Guangdong Province ETC

- Area: 170K km² ~ 7.5 \times New Jersey
- Population: 80 million~ 9× New Jersey
- Expressway: 8000 km ~ 17× New Jersey

Opportunities of ETC-based Sensing

Trip Length Distribution in terms of Distance and Duration

Challenges of ETC-based Sensing

Elements	Uncertainty
Destination	> 4 / each origin (Entropy=2.3)
Route	> 3 / each origin & destination
Speed	Standard Deviation: 35 km/h

14/31

System Overview

[1] Lakshminarayanan, Balaji, et al. "Mondrian forests: Efficient online random forests." NIPS. 2014.

System Overview

[1] Lakshminarayanan, Balaji, et al. "Mondrian forests: Efficient online random forests." NIPS. 2014.

Historical Route and Speed Learning without GPS

$max \sum_{ETC \ Records} logP(Travel \ Duration \mid Route , Speed)$

Joint Optimization with Expectation Maximization & Block Coordinate Descent

Evaluation: Methodology

Guangdong Province, China

Evaluation Results

[1] Arvind Thiagarajan, et al. Accurate, low-energy trajectory mapping for mobile devices. NSDI. 2011
[2] Xiaoyang Xie, et al. coSense: Collaborative Urban-Scale Vehicle Sensing based on Heterogeneous Fleets, UbiComp 2019

Evaluation Results

Question:

Is it possible to sense **Individual Vehicles** with **Full Penetration** in **Real Time** without GPS?

Case Study: Electric Toll Collection Network as a Stationary Sensing System

Generalization?

Generalization: From ETC to Urban Infrastructure

Utilizing Interactions between **Urban Infrastructure** and **Residents** to infer their Real-Time Locations?

Opportunities

- Low Cost
- Transparent
- High Penetration

Challenges

- Uncertainty
- Implicit
- Biased

Examples

- Cellular Network
- Payment Network
- Social Network
- Vehicular Network

•

Unifying by Fundamental Properties governing Mobility Sensing

Spatial Granularity & Temporal Continuity

Generalization: From ETC to Urban Infrastructures for Mobility Sensing

Toll Collection System (1,470 Stations (79 in Shenzhen))

Payment Network

(10,082 Stations)

Cellular Network

(3,595 Towers)

Social Networks (480,555 Point of Interests)

23/31

Generalization: From ETC to Urban Infrastructures for Mobility Sensing

Sharing: Resource Management (Sharing Economy)ScalesMobility Modality

26/31

Electric: Mobility and Charging Pattern Evolving of Electric Vehicles

Autonomous: Interaction between Vehicles and Edge Devices

Edge Computing

- Latency: Highly Responsive Services
- Bandwidth: Edge Analytics
- **Privacy:** Local Data Processing

NSF PAWR: COSMOS: Cloud-Enhanced Open Software-Defined Mobile-Wireless Testbed (Rutgers Winlab & Columbia & NYU) 28/31

Rutgers CS PhD Students

Zhihan Fang, Xiaoyang Xie, Yu Yang, Guang Wang, Qin Zhou, Fan Zhang, Shuxin Zhong, Wenjun Lyu, Guang Yang, Zhiqing Hong IIS:1849238 CNS:1951890 CNS:1952096 OAC:2003874 CMMI:1932223

Thanks

Data and More Work https://www.cs.rutgers.edu/~dz220/

Services

d.z@rutgers.edu

Knowledge

Systems

Measure & Predict

Models

- Privacy [Ubicomp 20-1]
- Locations [Ubicomp 19-1] [MobiCom 19-2]
- Energy [Ubicomp 20-4] [MobiCom 19-1]
- Behavior [Ubicomp 20-2]
- Routes [Ubicomp 20-3]
- Volume [WWW 20]
- Time [Ubicomp 19-2]
- Speed [SenSys 18]

312

GERS

Distance [Ubicomp 18-2]

Intervene & Alter

- Delivery [MobiCom 20]
- Charging [RTSS 18]
- Ridesharing[Ubicomp 18-4]
- Rebalancing [Ubicomp 18-3]
- Dispatching [WWW 19]
- Navigation [ICCPS 18]
- Planning [ICDCS 19]
- Transferring [Smartcomp 18]
- Parking [Ubicomp 18]