Numerical Methods for Predicting Coastal Flooding With Uncertainty

Kyle T. Mandli Columbia University

Department of Applied Physics and Applied Mathematics

Funding

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1720288 and OAC-1735609 and work supported by the National Center for Atmospheric Research, which is a major facility sponsored by the National Science Foundation under Cooperative Agreement No. 1852977.

Collaborators

Source: Jocelyn Augustino / FEMA - <u>http://www.fema.gov/photdata/original/38891.jpg</u>

Storm Surge

Reuters - Marc C. Olsen - U.S. Air Force

Hurricane Sandy

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Hurricane Irma

Hurricane Maria

Mexico Beach, FL - NOAA

Hurricane Michael

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Hurricane Harvey

Storm Surge Vulnerability

Hoboken Path Station, NJ - Port Authority

Transportation Vulnerability

Iwan Baan - Getty Images

Utility Vulnerability

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Tuckerton, NJ - boston.com

Residential Vulnerability

boston.com

COLUMBIA | ENGINEERING

Hansen, J., R. Ruedy, M. Sato, and K. Lo, 2010: Global surface temperature change, Rev. Geophys., 48, RG4004, doi:10.1029/2010RG000345.

GISTEMP Team, 2015: GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Dataset accessed 2015-10-13 at http://data.giss.nasa.gov/gistemp/.

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

IPCC, 5th assessment report

How does sea-level rise effect surge?

COLUMBIA | ENGINEI

Hay et al., 2015

How does sea-level rise effect surge?

NASA and NHC

Will dangerous storms become more frequent?

DOLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Can we predict surge probabilities?

C. Lee, M. Tippett, S. Camargo, A. Sobel (LDEO - Columbia)

Can we predict surge probabilities?

NOAA - NHC

Can we forecast events?

COLUMBIA | ENGINEERING The Fu Foundation School of Engineering and Applied Science

Can we quantify uncertainty?

How do we protect ourselves?

Can we protect ourselves?

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

FIGURE 17 - Potential Category 2 hurricane surge at South Ferry (Battery) Subway Station

US Army Corps 1995

Can we protect ourselves?

COLUMBIA | ENGINEERING

Overland Precipitation flooding

NASA Modis Satellite

Storm Surge Modeling

Storm Surge

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Storm Surge + Sea-Level

COLUMBIA ENGINEERING

The Fu Foundation School of Engineering and Applied Science

Shallow Flow

Régis Lachaume

Shallow Water - Topography

Storm Surge Model

$$\begin{aligned} h_t + (hu)_x + (hv)_y &= 0 \\ (hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x + (huv)_y &= \\ -ghb_x + fhv - \frac{h}{\rho}(P_A)_x + \frac{1}{\rho}(\tau_{sx} - \tau_{bx}) \\ (hv)_t + (huv)_x + \left(hv^2 + \frac{1}{2}gh^2\right)_y &= \\ -ghb_y - fhu - \frac{h}{\rho}(P_A)_y + \frac{1}{\rho}(\tau_{sy} - \tau_{by}) \end{aligned}$$

Storm Representation

CIMMS: http://cimss.ssec.wisc.edu/tropic2

Holland Hurricane Model

Holland, G. J. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review 108, 1212-1218 (1980)

ENGINEERING

The Fu Foundation School of Engineering and Applied Science

COLUMBIA

Holland Hurricane Model

Wind
$$|W| = \sqrt{\frac{AB(P_n - P_c)e^{-A/r^B}}{\rho_{air}r^B}} + \frac{r^2f^2}{4} - \frac{rf}{2}$$

Pressure $P_A = P_c + (P_n - P_c)e^{-A/r^B}$

COLUMBIA ENGINEERING The Fu Foundation School of Engineering and Applied Science

Kyle T. Mandli

Storm Surge Computing

COLUMBIA | ENGINEERING

Adaptive Mesh Refinement

Adaptive Mesh Refinement

GeoClaw

Marsha Berger (NYU)

Dave George (USGS)

Columbia | Engineering

The Fu Foundation School of Engineering and Applied Science

www.clawpack.org

Berger, M. J., George, D. L., LeVeque, R. J. & Mandli, K.T.The GeoClaw software for depth-averaged flows with adaptive refinement. Advances in Water Resources 34, 1195–1206 (2011).

Kyle T. Mandli

Adaptive Discretization

Adaptive Discretization

Level 2	Level 1

Kyle T. Mandli

43

Sraj, I., Mandli, K.T., Knio, O. M., Dawson, C. N., & Hoteit, I. Uncertainty Quantification and Inference of Manning's Friction Coefficient using DART Buoy Data during the Tohoku Tsunami. Ocean Modelling (2014).

Reduced Order Models

$G(x,t,\xi)\approx \tilde{g}(x,t,\xi)$

Forward Medelcedrorder Model

Polynomial Chaos Expansions

Spectral Galerkin Projection

$$G(\xi) \approx \sum_{k=0}^{R} g_k \psi_k(\xi)$$

Orthogonal Polynomials

$$\langle \psi_i, \psi_j \rangle = \int \psi_i(\xi) \ \psi_j(\xi) \ \rho(\xi) \ \mathsf{d}\xi = \delta_{ij} \left\langle \psi_i^2 \right\rangle$$

Projection

$$g_k = \frac{\langle G, \psi_k \rangle}{\langle \psi_k, \psi_k \rangle} = \frac{1}{\langle \psi_k, \psi_k \rangle} \int G\psi_k(\xi) \rho(\xi) \, \mathrm{d}\xi$$

POD-Galerkin Method

Hyperbolic PDEs are Low-dimensional

Snapshots are orthogonal

Inverse CDFs are low-rank

Low-Dimensional Transport Maps

 $u_0(x + \eta_1 w_1(y(x)) + \eta_2 w_2(y(x)))$

Example: Burgers' Equation

$$u_t + \left(\frac{1}{2}u^2\right)_x = 0.02e^{\mu_2 x}$$

ENGINEERING

The Fu Foundation School of Engineering and Applied Science

DEIM as a Solution

$$u^{n+1}(\mu) = r(u^n(\mu), u^{n+1}(\mu); \xi, \mu) \quad \forall \xi \in \mathbb{V}_{rb}$$

Discrete Empirical Interpolation Method (DEIM)

$$(F(u(x;\mu)),\xi_m) \approx \sum_{p=1}^P u(x_p;\mu)\xi_m(x_p)$$

Main Idea = Transport interpolation points

Combining DEIM with Transport

$$\mathbb{V}_{rb} = \{\xi_m\}_{m=1}^M$$

$$\mathcal{I} = \{x_p\}_{p=1}^M$$

Advected Basis Points

Moving Basis

Example: Translation and Dilation Parameters

Outlook

Storm Surge Computing

Adaptive Mesh Refinement

Package	Cores	Wall Time	Core Time	Top Surface - Gauge 9
ADCIRC	4000	35 minutes	2333 hours	Two Layer
GeoClaw	16	2 hours	32 hours	
GeoClaw	4	2 hours	8 hours	40000 60000 80000 100000 12000

Multilayer Shallow Water

Storm Surge Forecasting

Mandli, K.T. & Dawson, C. N. Adaptive Mesh Refinement for Storm Surge. Ocean Modelling 75, 36–50 (2014). Kyle T. Mandli 60

Multi-Fidelity Models

Return Curve Sensitivities

Kyle T. Mandli

Two-Layer Shallow Water

Mandli, K.T. A Numerical Method for the Two Layer Shallow Water Equations with Dry States. Ocean Modelling 72, 80–91 (2013).

Kyle T. Mandli

The Fu Foundation School of Engineering and Applied Science

Colton, C. J., Mandli, K.T., Kubatko, E., Eractally homogeneous, air-sea turbulence with Frequency-integrated, E. Kubatko, adapted from Munk, W. H. Origin and generation of waves. *Coastal Engineering Proceedings* (1950). wind-driven gravity waves. Submitted to Ocean Modelling.

Air-Sea Waves

Global Internal Tide Forecasting

Simmons, H. L., Hallberg, R. W. & Arbic, B. K. Internal wave generation in a global baroclinic tide model. Deep Sea Research Part II: Topical Studies in Oceanography 51, 3043–3068 (2004).

Columbia Engineering

The Fu Foundation School of Engineering and Applied Science

Kyle T. Mandli

Sraj, I., Mandli, K.T., Knio, O. M., Dawson, C. N., & Hoteit, I. Uncertainty Quantification and Inference of Manning's Friction Coefficient using DART Buoy Data during the Tohoku Tsunami. Ocean Modelling (2014).

UQ and Data Assimilation

"Exotic" Computing

Ongoing Work

Burstedde, C., Calhoun, D.A., Mandli, K. & Terrel, A. R. ForestClaw: Hybrid forest-of-octrees AMR for hyperbolic conservation laws. in ParCo 2013

Kyle T. Mandli

Ongoing Work

Mandli, K.T. et al. Clawpack: building an open source ecosystem for solving hyperbolic PDEs. PeerJ Comput. Sci. 2, e68 (2016).

ENGINEERING

The Fu Foundation School of Engineering and Applied Science

COLUMBIA

Thanks!

