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Molecular dynamics

Example: water on TiO2 surface
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MD and COVID-19
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Two main approaches
Calculate energy 𝐸𝐸 and force 𝐹𝐹𝐼𝐼:
• Computing on the fly using quantum mechanics (e.g. Kohn-Sham density functional theory). Accurate 

but expensive: ab initio molecular dynamics (AIMD)

Routinely done for hundreds of atoms, 1 picosecond (10−12 s) or less per day

• Empirical potentials: efficient but maybe much less accurate, e.g. TIP3P for water

Routinely done for millions to billions of atoms, nanosecond (10−9 s) to microsecond (10−6 s) per day 
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Pushing the limit of ab initio molecular dynamics with 
reduced scaling algorithms and supercomputers

[L., Lu, Ying and E, J. Comput. Phys. 2012]
[Banerjee, L., Suryanarayana, Yang, Pask, J. Chem. Theory Comput.  2018]

AIMD simulation of 8000 Si atoms (32000 electrons) for
1 ps (10−12s)
Total number of CPU cores: 34560. 
28 hour wall clock time
Nearly 1 million CPU hours.CS2CF: Two-level Chebyshev filter based complementary subspace method
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Pole expansion and selected inversion (PEXSI)
• At most 𝑂𝑂(𝑁𝑁2) scaling (insulators, 

semiconductor and metals). Standard 
method scales as 𝑂𝑂(𝑁𝑁3)

• Integrated with a number of community 
electronic structure software packages

• Solve systems > 10000 atoms.
• Efficiently use 10,000-100,000 cores.
• BigDFT
• CP2K
• DFTB+
• DGDFT
• FHI-aims
• QuantumWise AtK
• SIESTA

• “Electronic structure infrastructure” (ELSI)
https://wordpress.elsi-interchange.org/

http://www.pexsi.org/

https://wordpress.elsi-interchange.org/
http://www.pexsi.org/
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Solving quantum mechanics with ~ 10000 atoms: 
Pole expansion and selected inversion (PEXSI)

Electronic structure of large scale
graphene nanoflake (10000 atoms)

Predict large scale 
phospherene nanoflake (PNF) 
heterojunction as new 
candidates of solar cells (9000
atoms)

Large scale DNA calculation 
(20000 atoms)

[L., Lu, Ying, Car and E, Commun. Math. Sci. 2009] 
[L., Garcia, Huhs, Yang, JPCM 2014]
[Hu, L., Yang, Yang, J. Chem. Phys. 2014]

[Hu, L. and Yang, Phys. Chem. Chem. Phys. 2015]
[Hu, L., Yang, Dai and Yang, Nano Lett., 2016]
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Compared to state-of-the-art

>103 times faster

>102 times bigger

DP: 91PFLOPS (45% of the peak)

Mixed-SP: 162 PFLOPS

Mixed-HP: 275 PFLOPS

SC20 Gordon Bell Prize Finalist

arXiv: 2005.00223
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2020  CONQUEST
200K CPUs

2019 GB Finalist
DFT-FE, Summit
46PFLOPS,27K GPU

2008 GB prize
LS3DF,108TFLOPS

2006 GB prize
Qbox:262K CPUs
207TFLOPS

This work

2011 GB Prize, 3PFLOPS
RSDFT, K-computer,442K

AIMD and Gordon-Bell prize
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Ab initio Molecular Dynamics (AIMD): Solving DFT “on-the-fly”

4

AIMD
2006GB

2011GB

2008GB

Advantages: General and accurate
Limitations: Time and size scales

AIMDAIMD

+ HPC+Molecular Modeling Machine Learning

Density Functional
Theory (DFT) solver

Molecular Dynamics solver

Coordinate
Type
Cell tensor

Energy
Force
Virial
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AIMD
2006GB

2011GB

2008GB

Density Functional
Theory (DFT) solver

Molecular Dynamics solver

Coordinate
Type
Cell tensor

Energy
Force
Virial

Deep Potential:
Physical requirements + machine learning

DPMD

AIMDAIMD

+ HPC+Molecular Modeling Machine Learning

DPMD

Baseline DeePMD-kit

DeePMD-kit

Deep Potential

Molecular Dynamics solver

Coordinate
Type
Cell tensor

Energy
Force
Virial

Deep Potential Molecular Dynamics (DPMD): boosting AIMD with ML

Zhang et al, Phys. Rev. Lett. 2018;
Zhang et al, NeurIPS 2018.
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AIMD
2006GB

2011GB

2008GB

DPMD

AIMDAIMD

+ HPC+Molecular Modeling Machine Learning

DPMD

Baseline DeePMD-kit

Deep Potential Molecular Dynamics (DPMD): boosting AIMD with ML

Problem Time span 
[ns]

System size 
[#atom]

Droplet coalescence ~10 ~1e+8

Dynamic fracture ~0.1 ~1e+8

Strength of nanocrystalline metal ~0.01 ~1e+6

Heterogeneous aqueous interfaces ~100 ~1e+6

Time and size scales required by important Problems
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AIMD
2006GB

2011GB

2008GB

DPMD

AIMD

DPMD@Summit

AIMD

+ HPC+Molecular Modeling Machine Learning

DPMD

This work: molecular modeling + machine learning + HPC

Baseline DeePMD-kit

DPMD@Summit (copper) 

DPMD@Summit (water)

DPMD@Summit

Problem Time span 
[ns]

System size 
[#atom]

Droplet coalescence ~10 ~1e+8

Dynamic fracture ~0.1 ~1e+8

Strength of nanocrystalline metal ~0.01 ~1e+6

Heterogeneous aqueous interfaces ~100 ~1e+6

Time and size scales required by important Problems
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Method: Deep Potential Molecular Dynamics

7

Representation:

Optimization/Training:

Machine learning: 
Representing high-dimensional functions

Translational

Rotational

Permutational

Physical principles:
Extensive property; Symmetry invariance
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Method: Deep Potential Molecular Dynamics

7
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Machine learning of the electron density

7
[Zepeda-Nunez, Chen, Zhang, Jia, Zhang, L., 1912.00775]

isobutene

ethane

water 256 molecules
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Method: Deep Potential Molecular Dynamics

8

Concurrent Learning
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Method: Deep Potential Molecular Dynamics

Concurrent Learning

DeePMD-kit

Train/Test

8
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Method: Deep Potential Molecular Dynamics

Concurrent Learning

DeePMD-kit

Train/Test
“frozen model”

8
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Method: Deep Potential Molecular Dynamics

Concurrent Learning

DeePMD-kit

Train/Test
“frozen model”

DeePMD-kit
+LAMMPS

8
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Method: Deep Potential Molecular Dynamics

Concurrent Learning

DeePMD-kit

Train/Test
“frozen model”

Standard TF OPs Customized TF OPs

DeePMD-kit
+LAMMPS

8
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Method: Deep Potential Molecular Dynamics

Concurrent Learning

DeePMD-kit

Train/Test
“frozen model”

Standard TF OPs Customized TF OPs

DeePMD-kit
+LAMMPS

Typical training time 1~7 days with 1 GPU

8
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Method: Deep Potential Molecular Dynamics

Concurrent Learning

DeePMD-kit

Train/Test
“frozen model”

Standard TF OPs Customized TF OPs

DeePMD-kit
+LAMMPS

Computationally intensive

8
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Method: Deep Potential Molecular Dynamics

Concurrent Learning

DeePMD-kit

Train/Test
“frozen model”

Standard TF OPs Customized TF OPs

Single atom work-flow

Local env.
matrix

Embedding 
net 

DescriptorFitting net

DeePMD-kit
+LAMMPS

8
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Physical systems

• Single GPU:
• 8192 H2O molecule (24576 atoms)
• 4860 copper atoms

• Scaling:
• Strong scaling:

• Copper: 15,925,248 atoms
• Water: 12,779,520 atoms

• Weak scaling:
• Copper: each GPU holds 4656 atoms
• Water: each GPU holds 24834 atoms

500 MD steps are simulated in the tests. 
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Customized TensorFlow operators

step 2

type 0
neigh

type 1
neigh

(c) environment matrix

i

(a) original nlist (b) formatted nlist

type 0
neigh

type 1
neigh

direction of neigh.

step 1
i=0

i=1

i=2

i=3

Neighbor list from LAMMPS Sorted neighbor list

AoS => SoA
2

type dist. index

64bit 
3

type dist. index

compress1
Naïve
CUDA
kernel 
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Customized TensorFlow operators

Speedup of formatting neighbor list Speedup of all the customized TensorFlow operators

130x 38x 17x
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Mixed precision

12

Dense layer

Skipped dense

Skipped dense

Dense layer

Skipped dense

Skipped dense

Embedding net Fitting net

7 TFLOPS (double)

127 TFLOPS (half TensorCore) 

14 TFLOPS (single)
Boost perform

ance?

Lose Accuracy?
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Dense layer

Skipped dense

Skipped dense

float64 float32 float16*

In:  

Product
using 

Tensor Core

Output

Normal floating
point operation

12

Mixed precision
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Mixed precision: accuracy

• Mixed precision can achieve excellent accuracy

• Accuracy of MIX-32 is same as Double

Radial distribution functions 𝑔𝑔𝑂𝑂𝑂𝑂(𝑟𝑟), 𝑔𝑔𝑂𝑂𝐻𝐻(𝑟𝑟), and 𝑔𝑔𝐻𝐻𝐻𝐻(𝑟𝑟) of 
liquid water at ambient conditions, calculated by AIMD and 
four DeePMD-kit implementations: baseline, optimized 
double, MIX-32, and MIX-16

Testing error of 3 different precisions
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Strong scaling (I)

Water: 12,779,520 atoms

Average number of atoms (per GPU), average ghost
region size (per GPU), and double precision FLOPS for the
12,779,520 atoms water system.
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Strong scaling (II)

• Peak performance: 
• 78.3/117/171 PFLOPS for double/MIX-32/MIX-16

• Parallel efficiency: 87%/72%/62% using 4560 

nodes compared to 570 nodes. 

• Double precision scales better because of memory 

usage

• MIX-16 is 3x faster on 570 nodes, and 2.2x faster 

on 4560 nodes. 

Copper system: 15,925,248 atoms 
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Water: weak scaling from 285 to 4560 nodes
#atoms ranges from 42M to 679M

Copper: weak scaling from 285 to 4560 nodes
#atoms ranges from 7.9M to 127.4M

Weak Scaling: Water and Copper
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What if using bigger network?
• Better performance comes with bigger matrix size. 

• DeePMD-kit can reach 1.1EFLOPS with 1024x2048 matrix

• 32x64x128 is enough in terms of accuracy. 

• Computation is bound by hardware FLOP/Byte ratio:

• V100 GPU, FP-64: 7TFLOPS÷900GB/s =7.8FLOP/Byte

• V100 GPU, FP-32: 14TFLOPS÷900GB/s =15.5FLOP/Byte

• V100 GPU, HP-16: 120TFLOPS÷900GB/s =133FLOP/Byte

• Fujitsu A64FX CPU: 13.51TFLOPS ÷ 1024GB/s= 13.2FLOP/Byte

Peak performance of on Summit when using 
different embedding net size
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Application: nanocrystalline copper

18

• A 50 × 50 × 50 nm3 cube with more than 10 million 
atoms

• 64 randomly oriented crystals with 15-nm averaged 
grain diameter 

• Purple: copper atoms  (face-centered-cubic structure); 
Yellow: grain boundaries

Comp. Phys. Comm. 253, 107206 (2020)
Recent experimental works on nanocrystallines:
[1] Science 360, 526-530 (2018). [2] Nature 545, 80 (2017)

• The strength and hardness of 
metals can be enhanced by 
refining their grains into the 
nanometer scale [1][2]

• MD provides microscopic insights 
into the underlying mechanism

Methods

Stacking 
fault 

energy
(mJ/m2)

EXP 41

DFT 38.08

DP 36(2)

MEAM 72.7

A DP model with DFT accuracy 
provides more accurate properties for 
copper than widely used empirical 
models (MEAM)
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Application: nanocrystalline copper

18

• DPMD simulates the elongation of the nanocrystalline 
copper along the z direction (deformation: 10%) to yield 
the strength of nanocrystalline

• DPMD parameters: 50,000 steps at 300 K with a time-
step of 0.5 fs (strain rate of 5×108s-1); NPT ensemble

Purple: copper atoms; Yellow: grain 
boundaries; Cyan: dislocations

The origins of strength in nanocrystalline is 
governed by the movements of grain 
boundaries and dislocations, which can be 
simulated and analyzed by DPMD.
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Conclusion

19

• HPC + AI + Physical models: a new paradigm
• >1000x time-to-solution, >100x system size

• on exa-scale machine: billions of atoms

• Physics-based neural network design

• AI-specific hardwares in HPC+AI applications

• Applications
• Materials: alloy, battery, semiconductor, etc.

• Chemistry: catalysis, combustion, etc.

• Biology: drug design, protein folding, etc.

• Hardware/Software co-design
• New demand from HPC + AI + Physics

applications

+ HPC+Molecular Modeling Machine Learning

DPMD

DPMD@Summit

AIMD

faster, larger,
more realistic
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Thank you for your attention!
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