Quantifying parameter uncertainty within a climate model

<u>Oliver Dunbar</u>¹, Alfredo Garbuno-Iñigo², Tapio Schneider¹, Andrew Stuart¹, **CliMA**

¹California Institute of Technology ²Instituto Tecnológico Autónomo de México (ITAM)

Eric and Wendy Schmidt, Mountain Philanthropies, NSF, ONR, Paul G. Allen Family Foundation

NYSDS, 20th October 2020

The Climate Modelling Alliance (CliMA)

2018 Collaboration to produce a new Earth System Model¹. <u>clima.caltech.edu</u>

1 Computational challenges for climate modelling

2 Idealized climate model

3 Parameter uncertainty quantification

4 Summary and looking ahead

1 Computational challenges for climate modelling

2 Idealized climate model

3 Parameter uncertainty quantification

4 Summary and looking ahead

Global temperatures are increasing

Schneider & Held, J. Climate, 2001; update http://climate-dynamics.org/videos

But climate model predictions are uncertain

() Internal Variability, () Scientific (model) Uncertainty, () Scenario Uncertainty.

[IPCC 2013, Climate Change 2013: The Physical Science Basis, Working Group 1 Contribution to the fith Assessment Report (AR5)]

CO_2 concentration that breaches $2^{\circ}C$ warming?

Schneider et al., Nature Climate Change 2017

Ability to predict cloud cover is key

http://eoimages.gsfc.nasa.gov

Stratocumulus: colder

Cumulus: warmer

We don't know if we will get more low clouds (damped global warming), or fewer low clouds (amplified warming) with rising CO₂ levels

Cloud cover correlates with CO₂ concentration predictions

Schneider et al., Nature Climate Change 2017

Range of scales hampers ability to predict cloud cover

Range of scales hampers ability to predict cloud cover

Global model: ~10-50 km resolution

Subgrid-scale processes (e.g., clouds and turbulence) are represented in ad-hoc fashion (not data-driven)

There is available satellite data (JPL)

[https://atrain.nasa.gov/]

There are affordable limited-area simulations

Thousands of high-resolution simulations can be embedded in global model in a distributed computing environment (cloud), and the global model can learn from them

The Climate Modelling Alliance (CliMA)²

Our Aims

- Redesign physical models to better resolve clouds.
- Data assimilation, uncertainty quantification and machine learning framework to learn about parameter uncertainty within physical models.
- Include data from both high resolution simulation and observations.
- Julia language framework unified across all components. (v0.1.0 released!)

1 Computational challenges for climate modelling

2 Idealized climate model

3 Parameter uncertainty quantification

4 Summary and looking ahead

Going from parameters to data³

Ingredients

- Parameter (prior) distribution $\theta \sim \mu_0$, parameter space $\theta \in \Theta$.
- Data space $y \in \mathcal{Y}$.
- Forward map $\mathcal{G} \colon \Theta \to \mathcal{Y}$,
- Noise covariance Σ.

Recipe for data y:

$$y = \mathcal{G}(\theta) + N(0, \Sigma) \tag{1}$$

The perfect climate model setting⁴

Recipe for data y:

$$y = \mathcal{G}_{\mathcal{T}}(\theta; z_0) = \mathcal{G}_{\infty}(\theta) + \mathcal{N}(0, \Sigma)$$
(2)

- Forward map $\mathcal{G}_{\mathcal{T}}$, \mathcal{T} time averaged forward run of length \mathcal{T} .
- No observational noise η ('perfect setting'), but $\mathcal{G}_{\mathcal{T}}$ is noisy $N(0, \Sigma)$.

Perfect doesn't mean easy!

- $\mathcal{G}_{\mathcal{T}}$ is noisy, no access to $\mathcal{G}_{\infty}(\theta)$.
- $\mathcal{G}_{\mathcal{T}}$ expensive, especially for large \mathcal{T} .
- $\mathcal{G}_{\mathcal{T}}$ is non-differentiable.

Idealized moist GCM: Aquaplanet. T21 Spectral discretization (32 discrete latitudes). Moist convection in quasi-equilibrium (Betts Miller type). Features sources in temperature and humidity equations

$$\mathsf{Source}(x) = rac{x - x_{\mathsf{ref}}(lpha)}{ au}$$

 $0<\alpha<1$ relative humidity. $0<\tau$ relaxation time. Priors enforce constraints.

Properties: stationary statistics, zonally symmetric, $\theta = (\alpha, \tau)$

The data y

3 time averaged (T = 30 day) quantities

 $y^{\dagger} = \mathcal{G}_{T}(\theta^{\dagger}; z_{0})$, where $\theta^{\dagger} = (\alpha^{\dagger}, \tau^{\dagger}) = (0.7, \text{ 2hours})$

Caltech

1 Computational challenges for climate modelling

2 Idealized climate model

3 Parameter uncertainty quantification

4 Summary and looking ahead

Calibration objective: Find optimal $\theta^* \in \Theta$ that best fits with prior μ_0 and data y^{\dagger} .

Ensemble Kalman Inversion⁶ (EKI) to find θ^* :

- (+) Cheap! \sim 500 evaluations of ${\cal G}_{{\cal T}},$
- (+) Doesn't require differentiation! $\mathcal{G}_{\mathcal{T}}$ non-differentiable,
- (+) Works with noisy model evaluations! noisy objective function, But...
 - (-) Uncertainty greatly underpredicted. (Ensemble Collapse)

EKI optimization

Zooming in...

What is uncertainty quantification?

Sampling objective: Sample the distribution $\theta \mid y^{\dagger}$, given a prior μ_0 .

Markov Chain Monte Carlo (MCMC):

• (+) Uncertainty is quantified!

But...

- (–) Expensive. \sim 500,000 evaluations of ${\cal G}_{{\cal T}}$,
- (-) Gets stuck in local minima. noisy objective function.

Calibrate-Emulate-Sample⁷

Calibrate-Emulate-Sample (CES):

- (+) Uncertainty is quantified!
- (+) Cheap! \sim 500 evaluations of ${\cal G}_{{\cal T}}$,
- (+) Doesn't require differentiation! $\mathcal{G}_{\mathcal{T}}$ non-differentiable,
- (+) Works with noisy model evaluations! Emulator smoothes the objective.

⁷Cleary et al. 2019; Dunbar et al. 2020.

lim A

Calibrate-Emulate-Sample⁷

Learning: calibrate for training points

Caltech

Learning: emulate with Gaussian process

Learning: Sample with MCMC

(+) EKI Optimal θ^* , (•) Truth θ^{\dagger} .

Now we can make predictions of Qols!

A warming experiment

1 Computational challenges for climate modelling

2 Idealized climate model

3 Parameter uncertainty quantification

4 Summary and looking ahead

Summary

- Uncertainty is important, particularly parameter uncertainty.
- To make trustworthy predictions we must quantify it.
- CES pipeline automates and accelerates uncertainty quantification for expensive and noisy models in a black-box fashion.⁸ (Julia package forthcoming on Github)
- We benchmarked this for moist convection in an idealized aquaplanet.⁹

Looking ahead

- Structural model error,
- Higher dimensional parameter learning (and non-parametric function learning),
- Online learning,
- Automated optimal design...

Optimal placement of limited-area simulations

CES automates and accelerates the scientific loop!

The bigger picture

Clouds

Targeted High-Resolution Simulations

References

1

Cleary, Emmet et al. (2019). "Calibrate, Emulate, Sample". In: arXiv preprint arXiv:1912.

- Dunbar, Oliver R. A. et al. (2020). "Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM". In: arXiv preprint to appear within 1 month.
- Frierson, Dargan MW (2007). "The dynamics of idealized convection schemes and their effect on the zonally averaged tropical circulation". In: Journal of the Atmospheric Sciences 64.6, pp. 1959–1976.

Garbuno-Inigo, Alfredo et al. (2019). "Interacting Langevin Diffusions: Gradient Structure And Ensemble Kalman Sampler". In: arXiv: 1903.08866 [math.DS].

Iglesias, Marco A, Kody JH Law, and Andrew M Stuart (2013). "Ensemble Kalman methods for inverse problems". In: Inverse Problems 29.4, p. 045001.

- O'Gorman, Paul A. and Tapio Schneider (2008). "The Hydrological Cycle over a Wide Range of Climates Simulated with an Idealized GCM". In: Journal of Climate 21.15, pp. 3815–3832. DOI: 10.1175/2007JCLI2065.1.
- Schneider, Tapio et al. (2017). "Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations". In: Geophysical Research Letters 44.24, pp. 12, 396–12, 417. DOI: 10.1002/2017GL076101.

Stuart, Andrew M (2010). "Inverse problems: a Bayesian perspective". In: Acta Numerica 19, pp. 451–559.

