Tackling Data Science Challenges in the Exascale Computing Project

Lori Diachin, Lawrence Livermore National Laboratory (LLNL)
Deputy Director, Exascale Computing Project
www.exascaleproject.org

NYSDS 2021

October 26, 2021
The Exascale Computing Project (ECP) enables US revolutions in technology development; scientific discovery; healthcare; energy, economic, and national security.

ECP mission

Develop exascale-ready applications and solutions that address currently intractable problems of strategic importance and national interest.

Create and deploy an expanded and vertically integrated software stack on DOE HPC exascale and pre-exascale systems, defining the enduring US exascale ecosystem.

Deliver US HPC vendor technology advances and deploy ECP products to DOE HPC pre-exascale and exascale systems.

ECP vision

Deliver **exascale simulation and data science innovations and solutions to national problems** that enhance US economic competitiveness, change our quality of life, and strengthen our national security.
The ECP is part of the broader DOE Exascale Computing Initiative (ECI)

Three Major Components of the ECI

- **Exascale Computing Project (ECP)**
- **ECI partners**: US DOE Office of Science (SC) and National Nuclear Security Administration (NNSA)
- **ECI mission**: Accelerate R&D, acquisition, and deployment to deliver exascale computing capability to DOE national labs by the early- to mid-2020s
- **ECI focus**: Delivery of an *enduring and capable exascale computing capability for use by a wide range of applications* of importance to DOE and the US

Selected program office application development (BER, BES, NNSA)

Exascale system procurement projects & facilities
- ALCF-3 (Aurora)
- OLCF-5 (Frontier)
- ASC ATS-4 (El Capitan)
To date, only NVIDIA GPUs!

AMD, Intel and NVIDIA GPUs!
These systems will present significant challenges and opportunities for several aspects of data science and analytics

• **Challenges**
 – Increasing discrepancy between compute and IO speeds
 – Extremely large data sets generated by scientific simulations
 – GPU architectures are not always well aligned with the tasks associated with data analysis
 – Increasing complexity of scientific workflows including multiple simulation codes, AI/ML, analysis

• **Opportunities**
 – Large-scale data analysis through tighter coupling of experimental and HPC facilities
 – Use of AI/ML to improve simulations
 – Use of HPC and AI/ML for control of experimental facilities
 – Community-driven and adopted solutions

The ECP is addressing these challenges and opportunities through a variety of projects
The ECP is organized into three different technical focus areas:

Application Development (AD)
- Develop and enhance the predictive capability of applications critical to DOE
 - 24 applications
 - National security, energy, Earth systems, economic security, materials, data
 - 6 Co-Design Centers
 - Machine learning, graph analytics, mesh refinement, PDE discretization, particles, online data analytics

Software Technology (ST)
- Deliver expanded and vertically integrated software stack to achieve full potential of exascale computing
 - 71 unique software products spanning programming models and run times, math libraries, data and visualization

Hardware and Integration (HI)
- Integrated delivery of ECP products on targeted systems at leading DOE HPC facilities
 - 6 US HPC vendors focused on exascale node and system design; application integration and software deployment to Facilities
Addressing data science challenges happens primarily in the ST and Co-Design areas and progress is highlighted in applications.

Software Technologies
- ALPINE – data analytics and visualization tools (PI: J Ahrens, LANL)
- ExaWorks – software development toolkits for complex workflows (PI: D. Laney, LLNL)

Co-Design Centers
- CoDAR – compression and data analytics (PI: I Foster, ANL)
- ExaLearn – machine learning (PI: F Alexander, BNL)

Applications
- Candle - ML for cancer research (PI: R Stevens, ANL)
- ExaBiome – Computational biology and metagenomics (PI: K Yelick, LBNL)
- ExaFEL – Experimental Science Data (PI: A. Perazzo, SLAC)

Many many thanks to the great research teams that are conducting this work!
There are several key applications and technologies that highlight data science challenges and solutions at exascale.

Software Technologies
- ALPINE – data analytics and visualization tools
- ExaWorks – software development toolkits for complex workflows

Co-Design Centers
- CoDAR – compression and data analytics
- ExaLearn – machine learning

Applications
- Candle - ML for cancer research
- ExaBiome – Computational biology and metagenomics
- ExaFEL – Experimental Science Data

General solutions

Specific Applications
ECP’s Software Technology effort spans six technical areas

Programming Models & Runtimes
- Enhance and get ready for exascale the widely used MPI and OpenMP programming models (hybrid programming models, deep memory copies)
- Development of performance portability tools (e.g., Kokkos and Raja)
- Support alternate models for potential benefits and risk mitigation: PGAS (UPC++/GASNet), task-based models (Legion, PaRSEC)
- Libraries for deep memory hierarchy and power management

Development Tools
- Continued, multifaceted capabilities in portable, open-source LLVM compiler ecosystem to support expected ECP architectures, including support for F18
- Performance analysis tools that accommodate new architectures, programming models, e.g., PAPI, Tau

Math Libraries
- Linear algebra, iterative linear solvers, direct linear solvers, integrators and nonlinear solvers, optimization, FFTs, etc.
- Performance on new node architectures; extreme strong scalability
- Advanced algorithms for multiphysics, multiscale simulation and outer-loop analysis
- Increasing quality, interoperability, complementarity of math libraries

Data and Visualization
- I/O via the HDF5 API
- Insightful, memory-efficient in-situ visualization and analysis – Data reduction via scientific data compression
- Checkpoint restart

Software Ecosystem
- Develop features in Spack necessary to support all ST products in E4S, and the AD projects that adopt it
- Development of Spack stacks for reproducible turnkey deployment of large collections of software
- Workflow software development toolkits
- Regular E4S releases of the ST software stack and SDKs with regular integration of new ST products

NNSA ST
- Open source NNSA Software projects
- Projects that have both mission role and open science role
- Major technical areas: New programming abstractions, math libraries, data and viz libraries
- Cover most ST technology areas
- Subject to the same planning, reporting and review processes
Overview of ECP Data and Visualization Portfolio

Applications running on exascale supercomputer

In situ visualization and analysis

Data services
• Checkpoint restart, compression, coupling, storage performance tracking

Storage

Data collection, reduction, transform and workflow

Scalable storage software infrastructure

Interactive post-hoc approaches
ECP Data and Visualization

<table>
<thead>
<tr>
<th>Project Name</th>
<th>PI Name, Inst</th>
<th>Short Description/Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data & Vis SDK</td>
<td>Chuck Atkins, Kitware</td>
<td>Support the deployment, testing and usage of ECP Data and Visualization packages.</td>
</tr>
<tr>
<td>ADIOS</td>
<td>Scott Klasky, ORNL</td>
<td>Supports efficient I/O and code coupling services.</td>
</tr>
<tr>
<td>DataLib</td>
<td>Rob Ross, ANL</td>
<td>Supports efficient I/O including MPI-IO (ROMIO) and PNetCDF, as well as I/O monitoring (Darshan) and data services (Mochi)</td>
</tr>
<tr>
<td>ECP/VTK-m</td>
<td>Ken Moreland, SNL</td>
<td>Comprehensive effort to provide VTK-based scientific visualization software that supports shared memory parallelism.</td>
</tr>
<tr>
<td>VeloC</td>
<td>Franck Cappello, ANL</td>
<td>VeloC-SZ develops two software products: VeloC (checkpoint restart) and SZ (lossy compression with strict error bounds).</td>
</tr>
<tr>
<td>ExaIO</td>
<td>Suren Byna, LBNL</td>
<td>Efficient system topology and storage hierarchy-aware HDF5 and Unify (node local) parallel I/O libraries</td>
</tr>
<tr>
<td>ALPINE</td>
<td>James Ahrens, LANL</td>
<td>Deliver in situ visualization and analysis algorithms, infrastructure (ALPINE) and data reduction of floating-point arrays for reduced memory, communication, I/O, and offline storage via advanced data compression (ZFP).</td>
</tr>
</tbody>
</table>

- **VTK-m running on 16K GPUs**: Improved scaling with lower overhead.
- **HACC/VeloC**: 10x compression of simulation state in GENE fusion code with acceptable loss.
- **ALPINE/WarpX**: In situ integration.
ALPINE Overview

Problem: Compute power growing faster than I/O bandwidth; requires running visualization *in situ* (during the simulation) to reduce I/O in scientific computing applications.

ALPINE delivers in situ visualization and analysis *algorithms* and *infrastructure*.

- Automated in situ massive data reduction *algorithms*: statistical feature exploration, adaptive sampling, topology, task-based feature detection, optimal viewpoint, Lagrangian flow, …
 - **Pros**: No or greatly reduced I/O vs post-hoc processing, access to all data, computational power is readily available
 - **Cons**: Must know what you are looking for a priori, increasing complexity, memory and network constraints
- A portable, scalable, performant in situ *infrastructure* called Ascent
ALPINE algorithms help ECP scientists make the most of extreme datasets

Data Driven Sampling enables probabilistic identification of interesting regions in the data automatically, prioritizing important regions.

Task-based hierarchical feature extraction algorithm based on segmented merger tree. The algorithm is implemented using a multi-runtime abstraction layer, BabelFlow, which can be used to execute arbitrary analysis and visualization dataflows using different task-based runtime systems.

In situ statistical feature detection and characterization detects user specified features in particle data sets using statistical data modeling and probabilistic similarity measures.

Rotation invariant pattern detection is used to identify bubble edges, reducing data by saving only areas of interest.

Topological analysis is used to identify most relevant contours and create isosurface visualizations in situ; saving only resulting images for post hoc analysis.
ALPINE Infrastructure builds on well known and widely used visualization infrastructure

ParaView & VisIt and their in situ libraries (Catalyst and LibSim)

- Long-term DOE investments; two commonly used software packages for large-scale visualization and analysis within DOE SC and DOE NNSA
- ALPINE developers are ParaView and VisIt developers
- ALPINE will deliver in situ functionality leveraging ECP/VTK-m for performance and portability

Ascent

- An API that links into a simulation code:
 - Making Pictures -- "scenes"
 - Transforming Data -- “filter” or “pipeline”
 - Capturing Data -- "publish"
- Efficient distributed memory (MPI) and many-core (CUDA or OpenMP) execution; lower memory requirements than many tools
- Provides infrastructure for applications to access Vis, Storage and Service software technologies

Supports common visualization use cases including pseudocolor, threshold, contours, isovolumes, slices, etc

[Diagram: Links between ALPINE, ParaView, VisIt, LibSim, and Ascent with the ECP logo and project page link: https://github.com/Alpine-DAV]
ALPINE has enabled new science across a number of domains

Rendering at scale using Ascent

- The 97.8 billion element ICF Rayleigh Taylor mixing simulation ran across 16,384 GPUs on 4,096 Nodes
- Time-varying evolution of the mixing was visualized in-situ using Ascent, also leveraged 16,384 GPUs
- Ascent used VTK-m to run visualization algorithms on the GPUs

Identifying “voids” or bubble in MFIX-Exa particle data using statistical feature detection. L to R: (1) Void selection: box shows region of interest with low particle density. (2) Voids as seen in density field. (3) Voids in particle field. (4) Feature similarity field – how similar to region of interest. (5) Voids are isolated by thresholding for analysis and characterization.

Examples of Rover and Ascent integration to support in situ volume rendering and simulated radiography for the MARBL simulation code. Used for comparison of simulation and experimental data. Native support for higher order meshes is in beta development.
These capabilities are built on vtk-m; a toolkit of scientific visualization algorithms for emerging processor architectures

- Supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing

- Provides abstract models for data and execution that can be applied to a variety of algorithms across many different processor architectures.

- Redevelop, implement, and support necessary visualization algorithms on many-core architectures

- Leverages performance portability tools such as Kokkos
Scientific computing workflows underlie a significant number of projects in the ECP portfolio

Problem:
- Many teams are creating infrastructures to:
 - couple multiple applications
 - manage jobs, sometimes dynamically
 - orchestrate compute/analysis and manage data
- There is duplication of effort in these infrastructures
- These customized workflows incur significant costs to port, maintain and scale

The costs could be minimized by creating a reliable, scalable, portable **software development kit (SDK) for workflows**

This is the goal of the **ECP ExaWorks project**

ExaWorks Survey in 2020: responses from 15/31 ECP application teams highlight the ad hoc workflows landscape

https://exaworks.org/
The ExaWorks SDK provides a set of robust, scalable, and performance-driven components and APIs to users

- Implemented via community-based approach
- Initial SDK technologies are used in ECP and have proven scalability
- Community development activities
 - Definition of inclusion policies and common packaging requirements (based on E4S)
 - Continuous integration & deployment infrastructure to foster adoption and community
 - Working toward integration across technologies
 - Development of common API’s through an open community-based design process
- Initial alpha-release in October:

 https://exaworks.org/; https://github.com/ExaWorks
The ExaWorks project is engaging the workflow community and DOE facilities and impacting applications.

Application Impact: 3 of 4 Gordon bell Covid-19 finalists and three ECP applications leveraging ExaWorks Technologies

PSI/J: a common portable job submission API

Specification: https://exaworks.org/job-api-spect
Reference Python binding: https://github.com/ExaWorks/psi-j-python

Workflows Community Summits:
January 2021: 45 workflows leaders representing 27+ workflow systems
April 2021: 75+ developers and users

November 2021: ExaWorks & NSF WorkflowsRI Facilities Workshop

The ECP Co-Design portfolio sits one step closer to ECP applications

<table>
<thead>
<tr>
<th>Software Technologies</th>
<th>Co-Design Centers</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPINE – data analytics and visualization tools</td>
<td>CoDAR – compression and data analytics</td>
<td>Candle - ML for cancer research</td>
</tr>
<tr>
<td>ExaWorks – software development toolkits for complex workflows</td>
<td>ExaLearn – machine learning</td>
<td>ExaBiome – Computational biology and metagenomics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ExaFEL – Experimental Science Data</td>
</tr>
</tbody>
</table>

General solutions Specific Applications
Co-design centers address computational motifs common to multiple application projects.

Co-design helps to ensure that applications effectively utilize exascale systems:
- Pull software and hardware developments into applications
- Pushes application requirements into software and hardware RD&D
- Evolved from best practice to an essential element of the development cycle

CD Centers focus on a unique collection of algorithmic motifs invoked by ECP applications:
- **Motif**: algorithmic method that drives a common pattern of computation and communication
- CD Centers must address all high priority motifs used by ECP applications, including the new motifs associated with data science applications

Efficient mechanism for delivering next-generation community products with broad application impact:
- Evaluate, deploy, and integrate exascale hardware-aware software designs and technologies for key crosscutting algorithmic motifs into applications

<table>
<thead>
<tr>
<th>CODAR</th>
<th>COPA</th>
<th>AMReX</th>
<th>CEED</th>
<th>ExaGraph</th>
<th>ExaLearn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data and workflows</td>
<td>Particles/mesh methods</td>
<td>Block structured AMR</td>
<td>Finite element discretization</td>
<td>Graph-based algorithms</td>
<td>Machine Learning</td>
</tr>
</tbody>
</table>
CODAR addresses the challenge of a 10^{12} disparity between computing speed and I/O speed

- Center for Online Data Analysis and Reduction (CODAR) Mission
 - Identify the best data analysis and reduction algorithms for different application classes, in terms of speed, accuracy, and resource requirements.
 - Quantify tradeoffs in data analysis accuracy, resource needs, and overall application performance among various data reduction methods. How do these tradeoffs vary with exascale hardware and software choices?
 - Effectively orchestrate online data analysis and reduction to maximize performance and provide flexibility

- A key challenge: GPUs are not that helpful for internode communication bottlenecks

- Key ECP customers: WDMapp, CANDLE, NWChemEx

ODAR co-design frequently involves an iterative process of component experiments, coupled modeling, and evaluation
Key technologies for CODAR success

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
</tr>
</thead>
</table>
| **SZ Lossy Compression Framework** | A software framework for data and compression error analysis
Features:
- First modular, highly customizable/tunable lossy compressor (each compression stage can use different algorithms)
- Multiple compression error controls: Point wise error bounds (absolute, relative), statistical error bounds (PSNR). Dedicated error control for some applications.
- Integrated into ADIOS, HDF5, NetCDF, I/O libraries
https://szcompressor.org |
| **MGARD Lossy Compressor** | MGARD: Multigrid Adaptive Reduction of Data, based on orthogonal projection
Features:
- Works on tensor product grids and cell-based data (triangles and tetrahedra)
- Can compress while preserving analysis results
- Adaptive in both space and time
https://github.com/CODARcode/MGARD |
| **Z-checker** | A compression framework for scientific data
Features:
- Analyze initial data properties: Entropy, statistics
- Analyze the compression error with >30 metrics by comparing the initial data with decompressed data
- Produce a pdf report and visualization
- Read ADIOS, HDF5, NetCDF, plain binary stream of data
https://github.com/CODARcode/Z-checker |

Tools used in Cosmology, Quantum Chemistry, Molecular dynamics, etc.
One of the unique opportunities ECP has is to provide benchmarks for scientific data reduction

A community repository providing reference scientific datasets (mostly ECP application), compressors (lossless and lossy), and error analysis tools

Features:

• Collection of representative datasets from ECP and other applications via direct communication with application developers and users
• Storage of the datasets on the Petrel server at Argonne with Terabytes of storage capacity
• Fast access to the datasets using Globus and GridFTP
• Access open to public

Co-design aspects:

• A critical tool to co-design lossy compression schemes for ECP applications
• Existing compressors can be optimized/tunes based on these datasets
• New compression schemes are developed with insurance that the dataset are coming from actual users and application developers

Impact:

• Already recognized as a reference source of information for the developers of lossy and lossless compressors for scientific data

https://sdrbench.github.io/
CODAR is targeting several online data analysis and reduction motifs for use in applications

- **Online reduction**: ExaFEL: X-ray laser imaging
- **Online analysis**: NWChemEx: Molecular dynamics
- **Online coupling**: WDMApp: Fusion whole device model
- **Online aggregation**: CANDLE: Cancer deep learning

Hyperparam. optimization: 10^3–10^6 training runs, each fitting many parameters
The ExaLearn co-design center is focused on developing machine learning technologies along four different application pillars:

Surrogates replace computationally expensive simulations through machine learning (ML), cheaply.
Method Used: Generative adversarial networks (GAN) and hybrid autoencoders.
Example Applications: cosmology.

Control allows efficient exploration of complex problem spaces.
Methods Used: Reinforcement learning (RL) and surrogate models.
Example Applications: Accelerator control at Fermi Lab, self annealing control, light source control.

Design solves optimization problems with simulations steered by machine learning (ML) and optimal experimental design methods.
Methods Used: Bayesian optimization, message passing neural networks, Reinforcement learning.
Example Applications: molecular design.

Inverse problems use machine learning (ML) methods to projection from observation to original form.
Methods Used: Transfer Learning, Multitask Networks, Convolutional Autoencoder.
Example Applications: predict material structures from X-ray or neutron scattering profiles.
ExaLearn performance portability observations and lessons learned as we move to exascale computing platforms

- There are multiple DL frameworks used across 4 application pillars: PyTorch, TensorFlow, LBANN
 - All rely on vendor libraries for accelerated linear algebra, and low-latency high-bandwidth communication
 - Vendor-specific DL hardware optimization requires different algorithmic trade-offs (packing, tensor ordering, precision)
 - Coupling and interaction between portable libraries (i.e. MPI) and accelerators is clumsy at best – vendor specific libraries are at very different levels of maturity (NCCL, RCCL)
- GPU-initiated communication is critical issue for scalable deep learning tools
- Efficient interleaving of accelerated computation streams and communication hardware is necessary to avoid stalling GPUs
- Surrogate modeling problems require data sets with large samples that drive demands on both GPU memory and parallel file system bandwidth
 - Requires the ability to partition data ingestion of a single sample across parallel ranks to avoid being I/O bound
- Complex training algorithms can include multiple instances of DL framework running concurrently with multiple scientific “environment” codes
 - Creates heterogeneous compute demands sharing GPUs and CPUs
Tokamak Fusion Device modeling can leverage all four ExaLearn pillars

Surrogates
- ML-created models of conventional HPC particle-in-cell codes for plasma physics fusion dynamics (“GTC”)
- Synthetic “digital twins” enabling approximate real-time (RT) representation of large-scale HPC fusion simulations (“SGTC”)

Control
- ML-controlled fusion energy experiments with deployment in RT plasma control system (PCS) for DIII-D tokamak

Design
- ML-generated improved future magnetic confinement fusion systems
- Optimization of proposed ideas for RT plasma behavior within “computer design space” for advanced tokamaks

Inverse problems
- ML projection from experimental observations of plasma states to possible earlier states in evolution
- Predicting dynamical plasma structures from high-resolution diagnostic data
ExaLearn Investments Enabled a Gordon Bell Finalist for HPC Deep Learning Training at Scale for COVID-19 Research

- Scaled training of molecular generator DNN for ATOM drug design loop to all of Sierra
 - Training on 1.613B molecules achieved 318 PFLOPS in mixed precision FP16/FP32
 - 17.1% peak half-precision efficiency
 - ~266,240 node hours over a weekend w/o LBANN SW fault

- Deep learning at scale has center-wide impact → half-precision TensorCores lead to dramatic power swings:
 - Periodic 2-3 MW swings caused concern from power company—frequent 200 KW swings cause center concerns
 - Asynchronous learning algorithm minimized center-wide power swings

<table>
<thead>
<tr>
<th>GPUs/trainer</th>
<th>Trainers</th>
<th>Epoch time</th>
<th>PFLOPS</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>1040</td>
<td>17.2 s</td>
<td>253.3</td>
</tr>
<tr>
<td>8</td>
<td>2080</td>
<td>13.7 s</td>
<td>318.0</td>
</tr>
</tbody>
</table>

Table 6. Peak performance training with 4,160 nodes on Sierra.
Many ECP applications require advanced data analytics and/or machine learning to address their exascale challenge problems.

Software Technologies
- ALPINE – data analytics and visualization tools
- ExaWorks – software development toolkits for complex workflows

Co-Design Centers
- CoDAR – compression and data analytics
- ExaLearn – machine learning

Applications
- Candle - ML for cancer research
- ExaBiome – Computational biology and metagenomics
- ExaFEL – Experimental Science Data
CANDLE combines the strength of exascale computing with NIH domain knowledge to address cancer and precision medicine

Science Goals:

- **Drug Response**: Predict drug response for 1000 drugs and 500,000 drug combinations on 10,000 samples using *supervised learning* to capture nonlinear relationships between drug properties and tumor properties

- **RAS Pathway**: Predict multi-scale molecular dynamics simulation state transitions for 4000 simulations and 10s of species of lipid combinations and 10s of molecular configurations using *unsupervised learning*

- **Treatment Strategy**: Predict cancer phenotypes and patient treatment trajectories using *semi-supervised learning* to read and encode millions of clinical reports

Methods:

- Exascale deep learning environment for cancer
- Use and develop open-source deep learning frameworks
- Provide open-source benchmark problems and datasets
Recent results improve the confidence of using deep neural nets in these types of applications

- **CANDLE framework consists of**
 - DNN layer – utility library providing functions that streamline the process of writing CANDLE-compliant code; enables experiments to be designed that efficiently sweep across a range of network hyperparameters
 - Supervisor layer - provides a set of modules to enable various hyperparameter optimization (HPO) schemes and to automatically distribute the workload across available computing resources.

- **Recent Results:**
 - The ability to identify and understand low-confidence predictions of DNNs were significantly increased by training several thousand models on the DOE leadership computers and applying statistical methods to the outputs.
 - Combining molecular simulation and artificial intelligence on leadership-scale supercomputers—including the DOE supercomputers Summit and Theta, as well as the National Science Foundation Frontera supercomputer—is resulting in promising new insights into future COVID-19 therapeutics.
 - The CANDLE collaborative research team is applying the latest deep learning techniques for information extraction from COVID-19 and cancer-related literature. Several hundred thousand scientific reports and clinical records can be quickly and accurately scanned for relationships that shed new light on the underlying basis of diseases and provide insights toward new therapeutics.
ExaBiome develops scalable methods for metagenomic analysis

Science Goal: Compute the genome sequencing on communities with 1000s of microbial species; useful in environment, plant, animal and human health, bio-manufacturing
- Demonstrate on 50 TB of environmental data
- Challenge with methods that are not robust, evolving, and not well suited for GPUs

Application Problems
- Assemble genomes
- Compute distances using similarity networks
- Cluster computations
- Annotate and compare

Computational Motifs
- Hashtables
- Sorting
- Graph Traversal
- Generalized N-body
- Sparse matrices
- Sequence alignment
GPUs and distributed memory platforms allow for new approaches and science questions in metagenomics

- MetaHipMer Pipeline Advancements
 - New parallel implementation of K-mer analysis 3-5X faster using UPC++ instead of MPI; most time consuming stage
 - New scaffolding stage avoids serial bottlenecks that existed in previous versions
 - Using co-assembly of all samples together (rather than one sample at a time followed by a combination step) enabled previously unachievable results

- Careful implementation of alignment kernels on GPUs enabled speed ups of 6.6X on 1 GPU and 30.7X on 6 GPUs compared to CPU implementation
The ExaFEL project will leverage exascale computing to reduce, from weeks to minutes, the time needed to analyze LCLS data

Science Goal

- Detector data rates at light sources are advancing exponentially
- LCLS will increase data throughput by $O(10^3)$ by 2025.
- Data analysis must be carried out quickly to allow users to iterate their experiments and extract the most value from scarce beam time.

Data Challenge

- Ultrafast X-ray pulses from LCLS are used like flashes from a high-speed strobe light, producing stop-action movies of atoms and molecules
- Both data processing and scientific interpretation demand intensive computational analysis
ExaFEL: Data Analytics for High Repetition Rate Free Electron Lasers

Computational Tasks:

- **Serial Femtosecond Crystallography (SFX):** using x-ray tracing in nanocrystallography reconstruction (challenge problem)

- **Single Particle Imaging (SPI):** simultaneously determine conformational states, orientations, intensity, and phase from single particle diffraction images

- **Real time end-to-end workflows:** automate the coordination of resources to execute end-to-end workflows from SLAC to NERSC

Computational Challenges:

- Complex multi-component workflow, integration of DOE HPC and experimental facilities

- Moving from SFX to single particle imagining algorithms (M-TIP).

- Non-uniform FFTs on GPUs

- Improving algorithms for SFX: X-ray tracing for pixel-level resolution

- Maximum likelihood estimation optimization loop
If successful, ExaFEL will enable real time analysis at LCLS and enhance the ability to answer fundamental questions about the nature of matter

- New GPU kernels for solving nanoBragg inverse problem and demonstrated on Summit using $O(10^6)$ simulated diffraction patterns. Used to ameliorate the traditional X-ray diffraction indexing algorithms for Serial Femtosecond Crystallography (SFX).

- New Cartesian/non-uniform FFT formulation of M-TIP algorithm allows SPI reconstruction to scale to many nodes; allows analysis of massive data sets expected from LCLS upgrade

- Developed the ability to stream science data from SLAC to computing facility; start analysis job on the supercomputer, and report the results back in quasi real time. Integrated with LCLS data management system.
In summary, the ECP is addressing data science challenges at the largest computing scales

- **New capabilities**
 - Techniques for analyzing massive scientific data sets from simulations
 - In situ methodologies
 - Better I/O, compression algorithms
 - Complex workflows
 - Scalable machine learning/deep neural nets

- **Move to GPU architectures is well underway**

- **Technologies are used in a wide variety of applications important to the DOE**

- **Size of ECP project drives opportunities for increased cross team collaborations and community solutions**

For more information visit https://www.exascaleproject.org/
Questions?