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Named entity recognition in
electronic medical records

» Electronic medical records (EMRS)
— Semi-structure data

— Captured by medical staffs using health
Information systems in clinical activities.

— Contain words, symbols, charts, graphs,
numbers, and images detailing the health
conditions of patients.
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electronic medical records

Electronic medical records (EMRS)
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Named entity recognition in
electronic medical records

» Electronic medical records (EMRS)
— Language characteristics

« massive medical jargons, for example, “cerebral
infarction’;

» test results followed by units or doses such as
“100/70 mmHg”;

» numerous abbreviations such as “CT”’;

* iIncomplete syntactic components of sentences.
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Named entity recognition in
electronic medical records

« Named entity recognition (NER)
— A subtask of NLP
— Seeks to locate and classify named entities in

text into pre-defined categories

« Names of persons, organizations, locations,
expressions of times, quantities, monetary values,
percentages, and so on.
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electronic medical records

« Named entity recognition
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electronic medical records

 Previous studies
— Lexicon-based

— Supervised machine learning-based
» classification
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Named entity recognition in
electronic medical records

e Previous studies

— Supervised machine learning based

e Classification
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Named entity recognition in
electronic medical records

e Previous studies
~ NER in EMRs

 Seeks to locate and classify named entities
In EMRSs Into pre-defined categories

« Names of drugs, treatments, test, and so
forth.
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Named entity recognition in
electronic medical records

e Previous studies

— Most of studies focus on NER in English
EMRs

— Deep learning
» Convolutional neural network (CNN)

— Word to Vectors (Word2Vec)
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Named entity recognition in
electronic medical records

« Our goals

— Construct a model for accomplishing NER iIn
Chinese EMRs

— Using advantages of CNN and Word2Vec

18
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Methodology
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Methodology

* Word2Vec (2013 Google)
— A new word representation
— Reduce dimensions of data representation
— Overcome challenges of data sparseness
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Methodology
+ CNN
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Methodology
- CNN for NER in EMRs
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Methodology

* Predefined categories of named entities in
EMRS

— Five categories
 Disease
e Symptom
* Treatment
» Test
 Disease Group
— A multiclass classification problem
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* Training models

Methodology
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Experimental results

« Data set

— Chinese EMRs from Second Affiliated
hospital of Harbin Medical University,
Harbin City, Heilongjiang Province, China
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« Data set

Experimental results

EMR Type

#Documents

#Sentences

#Characters

#Entities
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Experimental results
 Results on Discharge Summary (accuracy %)

Entity Type
Model Disease Disease Symptom | Test | Treatment | Overall
Group

NB 44.82 N/A 51.72 65.96 59.00 58.91
ME 48.32 34.19 56.34 76.10 58.80 65.68
SVM 57.18 37.22 62.52 80.17 60.48 70.46
CRF 77.33 48.39 77.83 90.05 77.47 83.94
Our Model | 52.80 40.00 65.76 79.28 53.14 68.60
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Experimental results
» Results on Progress Notes (accuracy %)

Entity Type
Model Disease Disease Symptom| Test | Treatment | Overall
Group

NB 69.50 N/A 70.09 71.85 41.59 67.49
ME 71.49 41.15 72.37 77.58 52.93 72.44
SVM 77.77 21.12 76.92 81.49 56.36 76.45
CRF 87.24 36.06 87.09 | 90.31 75.60 87.22
Our Model | 76.19 12.50 76.31 | 76.65 51.83 73.40
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Discussion

* We present an effective method to mine
NER from Chinese EMRs according to
experimental results.

« Not to pay many attentions to feature
selection

 Two deficiencies of our method

« Cannot model relations between words

« Consume a mass of computation resources and time

for building many of classifiers
34
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e Conclusion and future work
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Conclusion and future work

« \We present an effective multiclass classification

method and verify its effectiveness on a corpus
consisting of Chinese EMRs.

* The method can be used to solve other
multiclass classification problems such as

Image labeling, semantic role labeling of words,
and semantic relation classification.

36



Conclusion and future work

 Verify effectiveness of our methods in other
applications

« Build a dependency parser system to extract
dependency syntactic relations.

« Automatically annotate EMRs to gain big data
for research.
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