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OUTLINE OF TALK

Introduction to cryo-electron microscopy
Reconstruction by frequency marching
Inverse acoustic scattering

Reconstruction by frequency marching/
recursive linearization (Y. Chen)

Examples

Future work



TRANSMISSION CRYO-ELECTRON MICROSCOPY

Allows near atomic resolution structure from proteins
without X-ray crystallography

No need for crystal growth
Closer to native environment
Leads to large, noisy data sets and complex processing task

Thanks to Gabriel Lander (Scripps Research Institute),
Bridget Carragher, Clint Potter, NY Structural Biology
Center

Joint work with Alex Barnett, Marina Spivak, Andras Pataki



This plastic tube contains our
molecular sample of interest

Inside the tube, the nanoparticles are freely mobile.
The sample must be frozen in order to image it

Slide courtesy Gabriel Lander




A tiny drop of the sample is
placed onto a copper grid

3mm/\

Slide courtesy Gabriel Lander




A tiny drop of the sample is
placed onto a copper grid

3 microliters of sample




The sample is loaded into a machine called aVitrobot

this chamber maintains
100% humidity and a
temperature of 4°C

Slide courtesy Gabriel Lander




The sample is loaded into a machine called aVitrobot

Thereare two blotting papers
on either side f the sample

Slide courtesy Gabriel Lander




The sample is loaded into a machine called aVitrobot

They close on the grid and
leave a very thin layer of
molecules in solution

Slide courtesy Gabriel Lander




The sample is then quickly plunged into liquid ethane

Liquid Eth

the sample freezes so fast that'ice crystals
can’t form - this is called “vitreous” ice




That is how we go from sample in solution...

7T

...to molecules frozen in thin ice

Slide courtesy Gabriel Lander




The grid containing the frozen molecules
is loaded into an electron microscope
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Now we can reconstruct a 3D structure
from the frozen molecules

Slide courtesy Gabriel Lander




This is an example of a transmission
electron microscope (TEM{
)
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Slide courtesy Gabriel Lander




Here are three molecules trapped
in different orientations

Underneath is a detector (such as photographic film)

Slide courtesy Gabriel Lander



Wheln we shoot thle molecules wit|1 an electron I:leam,
the orjientation of the |particles leaves|a unique “shadow”

These “shadows” contain all the 3-dimensional
information of the molecule, compressed into a 2D image

Slide courtesy Gabriel Lander







Even though the image is noisy, we can see that some
of the particles are trapped in the same orientation




ntrast of the cut-out molecules is inverted

SR R 2 SR 6 2 )s\; *ﬁwgf- E ue:”z’,‘j;as'
Although the raw data is noisy, we can rotate them so
that all the molecules are in the same orientation

Slide courtesy Gabriel Lander
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a thoughs%u €'raw data'f
that all the molecules are in the same orientation

Slide courtesy Gabriel Lander




These “aligned” molecules are then added together,
and this summed image provides a more detailed
view of the molecule in this orientation

Slide courtesy Gabriel Lander




We perform this same process for the
different orientations of the molecule
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Then we gather all these views and
combine them computationally
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This provides
reconstruction of our molecule

Slide courtesy Gabriel Lander




Zooming in, we can see

structural features that

tell us how the molecule
functions in 'Ehe cell

Slide courtesy Gabriel Lander




2.8 A resolution reconstruction of 20 S proteasome

« Melody Campbell, David Veesler, Anchi Cheng, Bridget Carragher, and Clinton S. Potter (2015). 2.8 A resolution
reconstruction of the Thermoplasma acidophilum 20 S proteasome using cryo-electron microscopy. eLife.




Idealized CryoEM Setting

e f(z,y,z) describes the structure of the unknown
object

e (0, ¢) specify the direction of projection

e v is in-plane rotation of projection

e P,(f) is an operator that takes projection of f(xz,y, z)
with Euler angles a = (6, ¢,~)




Problem

e Given a set of projections of the object from unknown angles «,
reconstruct the function f(z,y,z2)

e Challenges:
— Highly non-convex problem with noisy data
— Reconstruction is slow
— Requires initialization and refinement

— Validation is not robust



Reconstruct in Fourier Space

e Function f(z,y,z) describes unknown object

e Fourier transform in spherical coordinates is

[k, 0,0)

elet Sy(f) be an operator that takes a slice
through f with normal (6, ¢) and rotates the slice
by angle v

eSlice sqo = Sa(f) is Fourier transform of
projection P,(f) of function f(z,y, 2)

o sq(k, &) is sampled on a polar grid (k,¢§)




Data

e Data is a set of reference images R = {r,...,7n,}

ol = {r1,...,7n,} is (2D) Fourier transform of
reference images, sampled on a polar grid (k,¢)




Objective Function

If the angles A = {a1, .., ay,} of the reference images were given, f could
be recovered by a least squares problem L(}?,A)
N,
[F=LR,A) = arg{llinz [[Sa; () = 74
foog=

2
2

Since the angles A are unknown, we need to solve the nonlinear problem:

N,
{f*’A*} - aygminz HSQ}.(f) — f]“%
{f A} j=1



Objective Function Restricted to Frequency &k

e Let R([0,k]) denote reference images restricted to
ball up to frequency k

elLet f([0,k]) denote the reconstruction up to
frequency k using only the data R([0, k])

elet A = {aj,.,ay,} denote the angles of the
reference images

N

{F*([0, k), A*} = argmin " [ISa, (f(0, ]) = ([0, K13
{f(0H.4} j=1
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Marching In Frequency

Given f([0,k]) restricted to frequency k

e Estimate the angles of reference images
N,
aj = argmin Y [|Sa; f([0, k]) = #((0, k])|I%, 5 = {1.Ny}
A jZU ’
e Reconstruct f restricted to frequency k + ok

F(0,k + 6k)) = L(R([0, k + 6k)), A)

e Repeat




Intuition for Frequency Marching

objective function objective func. objective func. at full k:
restricted to low k: restricted to k+dk: (many local minima)
Aa Aa

N

Sk,

current f(k)

A(k)e-- x|

Sfik+dk)

fik)

fike+dk)
e At low frequency, the problem is ill-posed but nearly convex = recover only a few

parameters

e ‘“Likely” that global minimum at k-+dk can be reached by coordinate descent starting
from global minimum at &

e Reasonable to assume that, as k increases continuously, there is a smooth path
from global minimum at k,,;, to global minimum at k..



Implementation: Model Representation

e Discretize f(k;,&, ¢) using K nodes in each dimension

e On each spherical shell at radius k, represent f(k,e, o)
in the form

k 0,¢) Z Z Frm(R)Y;(0,0),

n=0m=-n

Yi(0,0) = P (cos0)e™

m . .
—P,ll | are associated Legendre functions of degree n
and order m

—p(k) = k+2 is the degree of the spherical harmonic
expansion on the sphere of radius k&
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Implementation : Fast algorithms

Operation counts for K spheres and N, reference images:
e Find angles A by matching reference images R to projections of the
current model
— naive: O(N,K?) optimized: O(N,K?)

e Reconstruct new model at current frequency k+0k by solving the least
squares problem f([0, k + 6k]) = L(R([0, k + 6k]), A).

— naive: O(N;KS) optimized: O(N, K>+ K3).



Least Squares

For each sphere at radius k, we have M = N, K point values, denoted by
b; and wish to solve

{famk)} = dIgmmz Il Z Jnm(R)Y" (01, 61)) — blH%

fnm = m,n

This is a linear least squares problem of2the form Tf = b,
where f = {fym}, b={h} and T € CMxEK",

We will solve this system using conjugate gradient on the normal
equations.

Note that a naive matrix-vector product requires O(MK4) work.



Fast Application of T

1. Tf can be evaluated on a regular spherical grid with K? points using
separation of variables in O(K?®) operations.

2. Given values on a regular grid, T'f can be evaluated at any target point
with ¢th order accuracy using q2 interpolation nodes.

3. The cost of applying T (or its adjoint) to a vector is reduced to
O(M¢* + K3).

4. With sufficient sampling on the sphere, the least squares problem is
well-conditioned.



e M - number of points

e K - order of spherical harmonic expansion

M| K2 |Timel|rel err|# CG iters
100,000] 900 | 2s. [310°0 8
10,000,000] 900 | 160s. |3 1077
10,000,000 | 10000 | 162s. |7 10~

IS

t

-7

Interpolation order set to 7 and the CG tolerance set to 10



Experiments with Simulated Data

PDB contains coordinates of atoms and types of atoms from X-ray
crystallography structures

1. Represent atoms as Gaussians with variance = (atomic radius)/2

2. Blur to 2 Angstrom resolution by convolving potential with Gaussian
3. Generate 50,000 projections with random Euler angles

4. Convolve with CTF

5. Add uniform noise

All experiments were run on 14 cores



Molecules

Rubisco

Lipoxygenase-1

Neurotoxin
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Least squares with

known angles

L2 norm of difference

from original
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SNR 0.3

Least squares with

known angles

L2 norm of difference

from original

Marching in

Frequency

L2 norm of difference
0.09

from original

SNR 0.1

0.14

0.41



Part |l: Inverse Scattering



INVERSE SCATTERING

Reconstruct the constrast function in a penetrable medium from
measurements of the scattered field induced by time harmonic
plane waves with varying angles of incidence and frequencies.

supplq(x)]

Q

Auat(2) + B (1 = (@) (@) = Kq(a)ui™(2)

Joint work with Carlos Borges, Adrianna Gillman



INVERSE SCATTERING

The problem as stated is nonlinear and ill-posed.

To deal with the nonlinearity, we apply Newton's method,
linearizing the problem about the current guess for the
unknown material properties. Iteration involves solving a
large number of forward scattering problems. Thus, fast
and accurate Helmholtz solvers are essential.

To deal with the ill-posedness of this problem, we use the
data from multiple directions and seek a successively more
resolved solution as we increase the frequency of the
interrogating waves, using Chen’s method of recursive
linearization.



THE SINGLE FREQUENCY PROBLEM

Suppose that, for a fixed frequency k, a series of
experiments is carried out, with M distinct plane waves
impinging on a domain Q which contains the support of an
unknown contrast function g(x).

Let the incident directions be denoted by
{dpm,m=1,...,M}.

The single frequency inverse scattering problem consists of
determining g(x) from {u}:a;m(é?), m=1,...,M}.



THE SINGLE FREQUENCY PROBLEM

In the far field, no more than O(k) independent
measurements can reasonably be made on 9B (Heisenberg).

In physical terms, Fourier modes on 93 whose frequency
exceeds k correspond to rapidly decaying fields. Acquiring
such data would impose exponential accuracy requirements.

For similar reasons, only O(k) directions of incidence are
useful, leading to a total of O(k?) independent
measurements.

Thus, in two dimensions, the single frequency inverse
problem is at the limits of feasibility in seeking to
reconstruct a model for g(x) with O(k?) unknowns.



THE MULTI-FREQUENCY PROBLEM

Suppose now that we probe the unknown function g(x) at
a set of frequencies {k;, j = 1,..., Q}, with incident
directions at each frequency k; denoted by

{dj,m7 m = 1,...,/\/’]}.

The multi-frequency inverse scattering problem consists of
determining g(x) from

uﬁrdj,m(Q);jZ L...,Q m=1,...,M}.



RECURSIVE LINEARIZATION

The recursive linearization method (Yu Chen, 1995)
overcomes the non-convexity of the problem by
“continuation” in frequency.

One solves a sequence of single-frequency inverse problems
for higher and higher values of k, using the approximation
of g(x) obtained at the preceding frequency as an initial
guess.

For sufficiently small steps in k, one can use only one
Newton iteration - hence, the name.



LINEARIZATION

The solution of the direct scattering problem with a single
incident plane wave u"(x) = exp(ikx - d;) defines an operator
Fi:q— u" where u™" is measured on the boundary 9B.
Given a set of M incident directions, the forward model is

F(q) = u*(x)[os

where u’(x)|sp denotes the vector of scattered data from all
incident angles.

Newton's method for the inverse problem is based on writing
g =qo+0q and

F(qo) + Jq(dq) = u*(x)|as

where qq is known, Jq, is the Jacobian (Fréchet derivative of F)
at gp and dq is to be determined.



LINEARIZATION

The Newton iteration proceeds as follows:
Given an approximation g() of the domain, solve the
equation
3089 = u®log — F(q¥).
Compute the update gt = ¢() 4 §q.
Stop when the residual tolerance has been achieved.

The system (?7?) is overdetermined and solved by LSQR or
CGN:

Bysa = 5 (- Fa)

where J:(i) is the adjoint of J ).



APPLYING J; AND Jg

Both J; and Jj can be applied by solving the forward scattering
problem M times.

Modern fast solvers require O(N3/2) work to factor the system
matrix, where N is the number of grid points. The solution time
for each subsequent right-hand side is of the order O(N). !
Thus, the total cost for a single frequency is

O(NnewtonN3/2) + O(Nnewton (2Niter + ]-) M N),

Since N = O(k?) and M = O(k), assuming Npewton and Nize,
are O(1), the cost scales like

O(k3).

LA. Gillman, A. Barnett, and P. Martinsson, A spectrally accurate direct
solution technique for frequency- domain scattering problems with variable
media, BIT Numerical Mathematics, 2014



FAST, DIRECT SOLVERS

A number of methods have been developed requiring
(’)(N3/2) work in 2D: Chen, Chew, Michielssen, Boag,
Gillman, Young, Martinsson, Rokhlin, G-, Ho, Engquist,
Ying, Zepeda-Ndfez, Demanet, Xia, Chandrasekaran, Gu,
Pals, Hackbusch, Borm, Sauter, Bebendorf, Kapur, Long,
Goreinov, Tyrtyshnikov, Zamarashkin, Gope, Jandhyala, ...
apologies to those omitted

More recently, O(N log N) variants have been developed:
Corona, Martinsson, Zorin, Ambikasaran and Darve, Ho and
Ying, etc.

Still a very active area with many open problems, including
extension to 3D, reduction of constants implicit in
O(N log N) notation, memory requirements, etc.



RECURSIVE LINEARIZATION

Given measurements u,i‘jfdj oforj=1...,Q m=1,... M:
Forj=1,...,Q:

Use Newton's method with initial guess qio) and far field

fa’ Let the result obtained after i iterations by q

Set qkojl = q,(()

Increase the number of degrees of freedom (Fourier

modes) in the representation for qy,,
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HEAD-LIKE CROSS-SECTION

(c) Head
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CONCLUSIONS

There are tremendous opportunities for discovery in the
biological and biomedical sciences which require significant
advances in scientific computing

A realization of the last few years: our ability to cope with
the data influx is falling behind

The creation of tools that allow us to process vast data sets
reliably is a central challenge.

Recent progress in optimization and fast algorithms can
have a significant impact on modern imaging technology.
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