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Then we gather all these views and 
combine them computationally

This provides us with a 3D 
reconstruction of our molecule

Slide courtesy Gabriel Lander

3 microliters of sample

Slide courtesy Gabriel Lander

Slide courtesy Gabriel Lander

Figure 1: Geometry of the cavity

proposes the second kind integral formulation. Section 3 shows the integral formulation admits
a unique solution for a given incident field. Section 4 reformulates the integral equation to
avoid the low frequency breakdown. Section 5 shows the Fourier decomposition of the surface
integral equation. Section 6 provides numerical examples to show the efficiency. Section 7
concludes the whole discussion.

2 Formulation

Consider a cavity W1 made by perfect conductors embedded in the infinite half space plane,
as shown in figure 1. We denote Gc the half space plane z = 0, which is also perfect con-
ductor. Let w be the frequency of the electromagnetic field. Given a time harmonic incident
field (Ẽinc, H̃inc) (time dependence is e�iwt), the total field (Ẽ, H̃), which is the summation of
incident field and scattered field, satisfies the Maxwell equation

�
�
�
r⇥ Ẽ � iwµH̃ = 0

r⇥ H̃ + iw#Ẽ = 0
for x 2 R3+ [ W1

where # is the electrical permittivity and µ is the magnetic permeability. We assume # and µ are
constant everywhere, so the normalized field E =

p
#Ẽ, H =

p
µH̃ satisfies the equation

�
�
�
r⇥ E � ikH = 0

r⇥ H + ikE = 0
(2.1)

where k = w
p

µ# is the wavenumber with =(k) � 0. Throughout the rest of the paper, we
focus on the normalized field only. For perfect conductors, the boundary condition is given by

n ⇥ E = 0 on Gc [ G, (2.2)
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Figure 1: A cavity W1 in a perfectly conducting half-space x3 � 0, with boundary G. The surfaces C1 and C2 define the two
halves of a sphere C which is sufficiently large to contain the cavity and a finite buffer region, denoted by B, in the x1x2-plane
beyond the edge of the cavity. The curve ` denotes the outer edge of the buffer region B. The unbounded half-space boundary
outside of C is denoted by Gc.

separation of variables solver for axisymmetric cavities, and then illustrate its accuracy and stability
in Section 6. Section 7 contains a brief discussion of open problems and some concluding remarks.

2 Mathematical formulation of the scattering problem

Suppose now that a perfectly conducting cavity W1 extends into the lower half-space x3 < 0, as
depicted in Figure 1. See the caption of Figure 1 for a description of the geometrical setup. The
region in the lower half-space with boundary G[ B[ Gc is assumed to be perfectly conducting. Given
a time harmonic incident field (Ẽinc, H̃inc) with an implicit time dependence of e�iwt, we seek to find
the scattered field (Ẽsc, H̃sc) so that the total field

Ẽ = Ẽinc + Ẽsc, H̃ = H̃inc + H̃sc

satisfies the the Maxwell equations
r⇥ Ẽ � iwµ H̃ = 0,

r⇥ H̃ + iw# Ẽ = 0

for x 2 R3+ [ W1. The material parameters are given by #, the electric permittivity, and µ, the
magnetic permeability. Assuming # and µ are constant, it is convenient to denote suitably normalized
fields by E =

p
#Ẽ, H =

p
µH̃, etc., leading to a simpler form of Maxwell’s equations

r⇥ E � ik H = 0,

r⇥ H + ik E = 0,
(2.1)

where k = w
p

µ# is known as the wavenumber. We assume that <(k) > 0 and =(k) � 0. For
perfect conductors, it is well-known [37] that the tangential electric field must satisfy the boundary
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1) Freeze sample

2) EM image

3) Process

Cryo � electron microscopy

Ultrasound imaging
wikipedia.org/wiki/Medical_ultrasound#doppler

© Nevit Dilmen
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Outline of talk

• Introduction to cryo-electron microscopy

• Reconstruction by frequency marching

• Inverse acoustic scattering

• Reconstruction by frequency marching/
recursive linearization (Y. Chen)

• Examples

• Future work

3 / 62



Transmission Cryo-Electron Microscopy

• Allows near atomic resolution structure from proteins
without X-ray crystallography

• No need for crystal growth

• Closer to native environment

• Leads to large, noisy data sets and complex processing task

• Thanks to Gabriel Lander (Scripps Research Institute),
Bridget Carragher, Clint Potter, NY Structural Biology
Center

• Joint work with Alex Barnett, Marina Spivak, Andras Pataki

4 / 62



This plastic tube contains our
molecular sample of interest

Inside the tube, the nanoparticles are freely mobile.
The sample must be frozen in order to image it

Slide courtesy Gabriel Lander
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3mm

A tiny drop of the sample is
placed onto a copper grid

Slide courtesy Gabriel Lander
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3 microliters of sample

side-view of grid

A tiny drop of the sample is
placed onto a copper grid

Slide courtesy Gabriel Lander
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The sample is loaded into a machine called a Vitrobot

this chamber maintains
100% humidity and a
temperature of 4ºC

Slide courtesy Gabriel Lander

8 / 62



The sample is loaded into a machine called a Vitrobot

There are two blotting papers
on either side of the sample

Slide courtesy Gabriel Lander
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The sample is loaded into a machine called a Vitrobot

There are two blotting papers
on either side of the sample

They close on the grid and
leave a very thin layer of

molecules in solution
Slide courtesy Gabriel Lander
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Liquid Ethane

Liquid Nitrogen

The sample is then quickly plunged into liquid ethane

the sample freezes so fast that ice crystals 
can’t form - this is called “vitreous” ice

Slide courtesy Gabriel Lander
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That is how we go from sample in solution...

...to molecules frozen in thin ice
Slide courtesy Gabriel Lander
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Now we can reconstruct a 3D structure 
from the frozen molecules

The grid containing the frozen molecules 
is loaded into an electron microscope 

Slide courtesy Gabriel Lander
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This is an example of a transmission
electron microscope (TEM)

FEI Tecnai F20
Slide courtesy Gabriel Lander
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Here are three molecules trapped 
in different orientations

Underneath is a detector (such as photographic film)

Slide courtesy Gabriel Lander
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When we shoot the molecules with an electron beam, 
the orientation of the particles leaves a unique “shadow”

These “shadows” contain all the 3-dimensional 
information of the molecule, compressed into a 2D image

Slide courtesy Gabriel Lander
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This is an example of an image we 
collect using the electron microscope

We can see the molecules as they are 
trapped in the ice, in different orientations

Slide courtesy Gabriel Lander
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Even though the image is noisy, we can see that some 
of the particles are trapped in the same orientation

We can select these molecules 
and cut them out of the image

Slide courtesy Gabriel Lander
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The contrast of the cut-out molecules is inverted

Although the raw data is noisy, we can rotate them so 
that all the molecules are in the same orientation

Slide courtesy Gabriel Lander
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The contrast of the cut-out molecules is inverted

Although the raw data is noisy, we can rotate them so 
that all the molecules are in the same orientation

Slide courtesy Gabriel Lander
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These “aligned” molecules are then added together,
and this summed image provides a more detailed 

view of the molecule in this orientation

Slide courtesy Gabriel Lander

21 / 62



We perform this same process for the 
different orientations of the molecule

Slide courtesy Gabriel Lander
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Then we gather all these views and 
combine them computationally

This provides us with a 3D 
reconstruction of our molecule

Slide courtesy Gabriel Lander
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Zooming in, we can see 
structural features that 

tell us how the molecule 
functions in the cell

Slide courtesy Gabriel Lander
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2.8 Å resolution reconstruction of 20 S proteasome

EM EMD-6287X-Ray PDB 1PMA

• Melody Campbell, David Veesler, Anchi Cheng, Bridget Carragher, and Clinton S. Potter (2015). 2.8 Å resolution 
reconstruction of the Thermoplasma acidophilum 20 S proteasome using cryo-electron microscopy.  eLife.
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Idealized CryoEM Setting

• f (x, y, z) describes the structure of the unknown

object

• (✓, �) specify the direction of projection

• � is in-plane rotation of projection

� �

�

• P↵(f ) is an operator that takes projection of f (x, y, z)

with Euler angles ↵ = (✓, �, �)
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Problem

• Given a set of projections of the object from unknown angles ↵,

reconstruct the function f (x, y, z)

• Challenges:

– Highly non-convex problem with noisy data

– Reconstruction is slow

– Requires initialization and refinement

– Validation is not robust
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Reconstruct in Fourier Space

• Function f (x, y, z) describes unknown object

• Fourier transform in spherical coordinates is

f̂ (k, ✓, �)

• Let S↵(f̂ ) be an operator that takes a slice

through f̂ with normal (✓, �) and rotates the slice

by angle �

�
(�, �) z

x

y

• Slice s↵ = S↵(f̂ ) is Fourier transform of

projection P↵(f ) of function f (x, y, z)

• s↵(k, ⇠) is sampled on a polar grid (k, ⇠)
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Data

• Data is a set of reference images R = {r1, ..., rNr
}

• R̂ = {r̂1, ..., r̂Nr
} is (2D) Fourier transform of

reference images, sampled on a polar grid (k, ⇠)
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Objective Function

If the angles A = {↵1, .., ↵Nr
} of the reference images were given, f̂ could

be recovered by a least squares problem L(R̂, A)

f̂⇤ = L(R̂, A) = arg min
f̂

NrX

j=1

kS↵j(f̂ ) � r̂jk2
2

Since the angles A are unknown, we need to solve the nonlinear problem:

{f̂⇤, A⇤} = arg min
{f̂ ,A}

NrX

j=1

kS↵j(f̂ ) � r̂jk2
2
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Objective Function Restricted to Frequency k

• Let R̂([0, k]) denote reference images restricted to

ball up to frequency k

• Let f̂ ([0, k]) denote the reconstruction up to

frequency k using only the data R̂([0, k])

• Let A = {↵1, .., ↵Nr
} denote the angles of the

reference images

{f̂⇤([0, k]), A⇤} = arg min
{f̂ ([0,k],A}

NrX

j=1

kS↵j(f̂ ([0, k])) � r̂j([0, k])k2
2
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Marching In Frequency

Given f̂ ([0, k]) restricted to frequency k

• Estimate the angles of reference images

↵j = arg min
A

NrX

j=0

kS↵jf̂ ([0, k]) � r̂j([0, k])k2, j = {1..Nr}

• Reconstruct f̂ restricted to frequency k + �k

f̂ ([0, k + �k]) = L(R̂([0, k + �k]), A)

• Repeat
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Intuition for Frequency Marching

A

^
f(k)

A(k)

A

A(k)

^
f(k)

current
f
^

A

^

objective function

restricted to low k:

objective func.

restricted to k+dk: (many local minima)

objective func. at full k:

...

f(k+dk)
^ f(k+dk)

^

linear least squares

best fit angles

f *

A*

• At low frequency, the problem is ill-posed but nearly convex ) recover only a few
parameters

• “Likely” that global minimum at k+�k can be reached by coordinate descent starting
from global minimum at k

• Reasonable to assume that, as k increases continuously, there is a smooth path
from global minimum at kmin to global minimum at kmax
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Implementation: Model Representation

• Discretize f̂ (k, ✓, �) using K nodes in each dimension

• On each spherical shell at radius k, represent f̂ (k, ✓, �)

in the form

f̂ (k, ✓, �) =

p(k)X

n=0

nX

m=�n

fnm(k)Y m
n (✓, �) ,

Y m
n (✓, �) = P

|m|
n (cos ✓)eim�

– P
|m|
n are associated Legendre functions of degree n

and order m

– p(k) = k + 2 is the degree of the spherical harmonic

expansion on the sphere of radius k
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Implementation : Fast algorithms

Operation counts for K spheres and Nr reference images:

• Find angles A by matching reference images R̂ to projections of the

current model

– naive: O(NrK
5) optimized: O(NrK

3)

• Reconstruct new model at current frequency k+�k by solving the least

squares problem f̂ ([0, k + �k]) = L(R̂([0, k + �k]), A).

– naive: O(NrK
6) optimized: O(NrK

2 + K3).
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Least Squares

For each sphere at radius k, we have M = NrK point values, denoted by

bl and wish to solve

{f⇤nm(k)} = arg min
{fnm}

MX

l=1

k(
X

m,n

fnm(k)Y m
n (✓l, �l)) � blk2

2.

This is a linear least squares problem of the form T f = b,

where f = {fnm}, b = {bl} and T 2 CM⇥K2
.

We will solve this system using conjugate gradient on the normal

equations.

Note that a naive matrix-vector product requires O(MK4) work.
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Fast Application of T

1. T f can be evaluated on a regular spherical grid with K2 points using

separation of variables in O(K3) operations.

2. Given values on a regular grid, T f can be evaluated at any target point

with qth order accuracy using q2 interpolation nodes.

3. The cost of applying T (or its adjoint) to a vector is reduced to

O(Mq2 + K3).

4. With su�cient sampling on the sphere, the least squares problem is

well-conditioned.
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Time

• M - number of points

• K - order of spherical harmonic expansion

M K2 Time rel err # CG iters
100, 000 900 2s. 3 10�6 8

10, 000, 000 900 160s. 3 10�7 4

10, 000, 000 10000 162s. 7 10�8 5

Interpolation order set to 7 and the CG tolerance set to 10�7.
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Experiments with Simulated Data

PDB contains coordinates of atoms and types of atoms from X-ray

crystallography structures

1. Represent atoms as Gaussians with variance = (atomic radius)/2

2. Blur to 2 Angstrom resolution by convolving potential with Gaussian

3. Generate 50,000 projections with random Euler angles

4. Convolve with CTF

5. Add uniform noise

All experiments were run on 14 cores
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Molecules

Rubisco Lipoxygenase-1 Neurotoxin

40 / 62



Original SNR 0.3 SNR 0.1

Reference

images

Recon-

struction

Slice

Time 1.65 hours 1.7 hours
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SNR 0.3 SNR 0.1

Least squares with

known angles

L2 norm of di↵erence

from original
0.09 0.17

Marching in

frequency

L2 norm of di↵erence

from original
0.12 0.31
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Original SNR 0.3 SNR 0.1

Reference

images

Recon-

structions

Slice

Time

1.56 hours 1.76 hours
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SNR 0.3 SNR 0.1

Least squares with

known angles

L2 norm of di↵erence

from original
0.10 0.26

Marching in

frequency

L2 norm of di↵erence

from original
0.11 0.38
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original SNR 0.3 SNR 0.1

Reference

images

Recon-

structions

Slice

Time 1.1 hours 1.25 hours
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SNR 0.3 SNR 0.1

Least squares with

known angles

L2 norm of di↵erence

from original
0.08 0.14

Marching in

Frequency

L2 norm of di↵erence

from original
0.09 0.41
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Part II: Inverse Scattering
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Inverse scattering

Reconstruct the constrast function in a penetrable medium from
measurements of the scattered field induced by time harmonic
plane waves with varying angles of incidence and frequencies.

⌦

@Buinc

uscat

supp[q(x)]

�uscat(x) + k2(1 � q(x))uscat(x) = k2q(x)uinc(x)

Joint work with Carlos Borges, Adrianna Gillman
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Inverse scattering

• The problem as stated is nonlinear and ill-posed.

• To deal with the nonlinearity, we apply Newton’s method,
linearizing the problem about the current guess for the
unknown material properties. Iteration involves solving a
large number of forward scattering problems. Thus, fast
and accurate Helmholtz solvers are essential.

• To deal with the ill-posedness of this problem, we use the
data from multiple directions and seek a successively more
resolved solution as we increase the frequency of the
interrogating waves, using Chen’s method of recursive
linearization.
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The single frequency problem

• Suppose that, for a fixed frequency k , a series of
experiments is carried out, with M distinct plane waves
impinging on a domain Ω which contains the support of an
unknown contrast function q(x).

• Let the incident directions be denoted by
{dm,m = 1, . . . ,M}.

• The single frequency inverse scattering problem consists of
determining q(x) from {ufark,dm

(θ),m = 1, . . . ,M}.
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The single frequency problem

• In the far field, no more than O(k) independent
measurements can reasonably be made on ∂B (Heisenberg).

• In physical terms, Fourier modes on ∂B whose frequency
exceeds k correspond to rapidly decaying fields. Acquiring
such data would impose exponential accuracy requirements.

• For similar reasons, only O(k) directions of incidence are
useful, leading to a total of O(k2) independent
measurements.

• Thus, in two dimensions, the single frequency inverse
problem is at the limits of feasibility in seeking to
reconstruct a model for q(x) with O(k2) unknowns.
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The multi-frequency problem

• Suppose now that we probe the unknown function q(x) at
a set of frequencies {kj , j = 1, . . . ,Q}, with incident
directions at each frequency kj denoted by
{d j ,m, m = 1, . . . ,Mj}.

• The multi-frequency inverse scattering problem consists of
determining q(x) from
{ufarkj ,d j,m

(θ); j = 1, . . . ,Q, m = 1, . . . ,Mj}.
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Recursive linearization

• The recursive linearization method (Yu Chen, 1995)
overcomes the non-convexity of the problem by
“continuation” in frequency.

• One solves a sequence of single-frequency inverse problems
for higher and higher values of k , using the approximation
of q(x) obtained at the preceding frequency as an initial
guess.

• For sufficiently small steps in k , one can use only one
Newton iteration - hence, the name.
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Linearization

The solution of the direct scattering problem with a single
incident plane wave uincj (x) = exp(ikx · dj) defines an operator

Fj : q → ufar , where ufar is measured on the boundary ∂B.
Given a set of M incident directions, the forward model is

F(q) = us(x)|∂B

where us(x)|∂B denotes the vector of scattered data from all
incident angles.
Newton’s method for the inverse problem is based on writing
q = q0 + δq and

F(q0) + Jq(δq) = us(x)|∂B

where q0 is known, Jq0 is the Jacobian (Fréchet derivative of F)
at q0 and δq is to be determined.
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Linearization

The Newton iteration proceeds as follows:

• Given an approximation q(i) of the domain, solve the
equation

Jq(i)δq = us|∂B − F(q(i)).

• Compute the update q(i+1) = q(i) + δq.

• Stop when the residual tolerance has been achieved.

• The system (??) is overdetermined and solved by LSQR or
CGN:

J∗
q(i)

Jq(i)δq = J∗
q(i)

(
us|∂B − F(q(i))

)
,

where J∗
q(i)

is the adjoint of Jq(i) .
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Applying Jq and J∗q

Both Jq and J∗q can be applied by solving the forward scattering
problem M times.
Modern fast solvers require O(N3/2) work to factor the system
matrix, where N is the number of grid points. The solution time
for each subsequent right-hand side is of the order O(N). 1

Thus, the total cost for a single frequency is

O(NnewtonN
3/2) + O(Nnewton (2Niter + 1)M N),

Since N = O(k2) and M = O(k), assuming Nnewton and Niter

are O(1), the cost scales like

O(k3).

1A. Gillman, A. Barnett, and P. Martinsson, A spectrally accurate direct
solution technique for frequency- domain scattering problems with variable
media, BIT Numerical Mathematics, 2014
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Fast, direct solvers

• A number of methods have been developed requiring
O(N3/2) work in 2D: Chen, Chew, Michielssen, Boag,
Gillman, Young, Martinsson, Rokhlin, G–, Ho, Engquist,
Ying, Zepeda-Núñez, Demanet, Xia, Chandrasekaran, Gu,
Pals, Hackbusch, Börm, Sauter, Bebendorf, Kapur, Long,
Goreinov, Tyrtyshnikov, Zamarashkin, Gope, Jandhyala, ...
apologies to those omitted

• More recently, O(N logN) variants have been developed:
Corona, Martinsson, Zorin, Ambikasaran and Darve, Ho and
Ying, etc.

• Still a very active area with many open problems, including
extension to 3D, reduction of constants implicit in
O(N logN) notation, memory requirements, etc.
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Recursive Linearization

Given measurements ufar
kj ,d j,m

, for j = 1, . . . ,Q, m = 1, . . . ,Mj :

1. For j = 1, . . . ,Q:

1.1 Use Newton’s method with initial guess q
(0)
kj

and far field

ufarkj
. Let the result obtained after i iterations by q

(i)
kj

.

1.2 Set q
(0)
kj+1

= q
(i)
kj

.

1.3 Increase the number of degrees of freedom (Fourier

modes) in the representation for qkj+1 .
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Simple cross-section

k = 1 k = 5

k = 14.25 Exact

(a) Simple
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ex1-025-6.mov
Media File (video/quicktime)



Thorax-like cross-section

k = 1 k = 10

k = 50

k = 70 Exact

k = 25

(b) Thorax
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thorax.mov
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Head-like cross-section

k = 1 k = 10

k = 25 k = 50

k = 70 Exact

(c) Head
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Conclusions

• There are tremendous opportunities for discovery in the
biological and biomedical sciences which require significant
advances in scientific computing

• A realization of the last few years: our ability to cope with
the data influx is falling behind

• The creation of tools that allow us to process vast data sets
reliably is a central challenge.

• Recent progress in optimization and fast algorithms can
have a significant impact on modern imaging technology.
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