
Searching Workflow

Documentation with MPO

John Wua, E. N. Coviellob, S.M. Flanaganb, M.

Greenwaldc, X. Leeb, A. Romosana, D.P. Schisselb,

A. Shoshania, J. Stillermanc, J. Wrightc
aLawrence Berkeley National Laboratory

bGeneral Atomics
cMassachusetts Institute of Technology

Newton

Da Vinci

Darwin

Tesla

Lovell

Information Lifecycle Management: the Gold Old Days

NYSDS - MPO 2

NYSDS - MPO 3

New Demand of Reproducible Research

NYSDS - MPO 4

cdlib.org

Funding

Agencies

Demand

Reproducible

Research

https://datapub.cdlib.org/2013/02/28/the-new-ostp-policy-what-it-means/
http://www.gpo.gov/fdsys/pkg/FR-2014-07-29/pdf/2014-17761.pdf
http://www.gpo.gov/fdsys/pkg/FR-2014-07-29/pdf/2014-17761.pdf
http://www.gpo.gov/fdsys/pkg/FR-2014-07-29/pdf/2014-17761.pdf
http://www.gpo.gov/fdsys/pkg/FR-2014-07-29/pdf/2014-17761.pdf
http://www.gpo.gov/fdsys/pkg/FR-2014-07-29/pdf/2014-17761.pdf

Example 1: Earth System Grid Forum (ESGF)

• The Earth System Grid Federation (ESGF) develops the

software infrastructure for global climate research community

• ESGF has a distributed and federated architecture

• Participating agencies: IPCC, DOE, NOAA, NASA, NSF

• Data size: CMIP5 10PB

NYSDS - MPO 5

Figure 2. Software components that may be deployed onto an ESGF
Node, grouped by “flavor” or area of functionality.

Figure 1. Schematic representation of the Earth System Grid Federation
(ESGF) as a system of Nodes hosting services of four possible “flavors”.
Nodes continually exchange messages with each other through the peer-
to-peer (P2P) protocol (here pictured as the central core of the system). A
client can query any Node to access data and metadata throughout the
federation.

and broad developer base. It is the leading source for current
climate data holdings, including the most important and largest
data sets in the global-climate community.

Through ESGF, users access, analyze, and visualize data
using a globally federated collection of networks, computers,
and software. In addition, an enterprise system was adopted to
support international intercomparison activities of climate
models and observations as well as high-profile projects
involving such organizations as the Department of Energy
(DOE), the National Oceanic and Atmospheric Administration
(NOAA), the National Aeronautics and Space Administration
(NASA), and the National Science Foundation (NSF).

II. ARCHITECTURE

ESGF is based on a distributed and federated software
architecture (see Figure 1). The system is composed of multiple
sites (called “Nodes”) that are geographically distributed
around the world, but can interoperate because they have
adopted a common set of services, protocols and APIs. Data
and metadata are managed and stored independently at each
Node; yet, clients can access them as if they were held on a
single global archive. Nodes can join or leave the federation
dynamically, and the services and holdings that are
discoverable and accessible by clients will automatically
change to reflect the latest state of the system.

Internally, each ESGF Node is composed of a set of
services and applications that collectively enable data and
metadata access and user management (see Figure 2). The
software stack includes components that were developed
directly by ESGF (e.g., the Publishing program, many of the
data and metadata web services, and the web portal user
interface), as well as open-source, third-party applications that
are commonly used in industry (Postgres, Tomcat, Solr),
eScience (MyProxy, GridFTP) and the geospatial community
(THREDDS, Live Access Server (LAS)). These components
are logically grouped in four areas of functionality, which
determine the Node “flavors” (color coded in Figures 1 and 2):

· The Data Node (blue color, Figure 2) includes services for
secure data publication and access. Its main components
are the data Publisher application that generates the
metadata catalogs, the THREDDS and GridFTP servers
(with security filters at the front end) to serve the data, and
the OpenID Relying Party and Authorization Service to
ensure proper authentication and authorization.

· The Index Node (tan color, Figure 2) contains services for

indexing and searching metadata, currently implemented

using Apache Solr as the back-end server. The Web Portal

application provides a convenient browser-based interface

for system users and administrators, while the Dashboard

contains utilities that monitor and report on the state of

the federation. The Common Information Model (CIM)

Viewer is a plugin component that retrieves and displays

model metadata from CIM repository sources.

· The Identity Provider (light green color, Figure 2) allows

user authentication and secure delivery of user attributes.

It includes an OpenID Provider for browser-based

authentication, a MyProxy server for requesting limited-

lifetime user certificates, and Registration and Attribute

Services for distributed access control.

· The Compute Node (purple color, Figure 2) contains

higher-level services for data analysis and visualization.

Currently its only components are the Live Access Server,

the Ferret-THREDDS Data Server and the Ferret engine.

More analysis engines (e.g., Ultra-scale Visualization

Climate Data Analysis Tools (UV-CDAT)) are to be

added in the near future.
Additionally, each of these flavors always includes the

Node Manager, a web application that allows a Node to
continually exchange service and state information with all its
peers throughout the federation. Each Node can be configured
during installation to have one, more, or all of the flavors,
depending on the site specific needs. Furthermore, a site can
combine multiple Nodes configured for different flavors, to

Figure 2. Software components that may be deployed onto an ESGF
Node, grouped by “flavor” or area of functionality.

Figure 1. Schematic representation of the Earth System Grid Federation
(ESGF) as a system of Nodes hosting services of four possible “flavors”.
Nodes continually exchange messages with each other through the peer-
to-peer (P2P) protocol (here pictured as the central core of the system). A
client can query any Node to access data and metadata throughout the
federation.

and broad developer base. It is the leading source for current
climate data holdings, including the most important and largest
data sets in the global-climate community.

Through ESGF, users access, analyze, and visualize data
using a globally federated collection of networks, computers,
and software. In addition, an enterprise system was adopted to
support international intercomparison activities of climate
models and observations as well as high-profile projects
involving such organizations as the Department of Energy
(DOE), the National Oceanic and Atmospheric Administration
(NOAA), the National Aeronautics and Space Administration
(NASA), and the National Science Foundation (NSF).

II. ARCHITECTURE

ESGF is based on a distributed and federated software
architecture (see Figure 1). The system is composed of multiple
sites (called “Nodes”) that are geographically distributed
around the world, but can interoperate because they have
adopted a common set of services, protocols and APIs. Data
and metadata are managed and stored independently at each
Node; yet, clients can access them as if they were held on a
single global archive. Nodes can join or leave the federation
dynamically, and the services and holdings that are
discoverable and accessible by clients will automatically
change to reflect the latest state of the system.

Internally, each ESGF Node is composed of a set of
services and applications that collectively enable data and
metadata access and user management (see Figure 2). The
software stack includes components that were developed
directly by ESGF (e.g., the Publishing program, many of the
data and metadata web services, and the web portal user
interface), as well as open-source, third-party applications that
are commonly used in industry (Postgres, Tomcat, Solr),
eScience (MyProxy, GridFTP) and the geospatial community
(THREDDS, Live Access Server (LAS)). These components
are logically grouped in four areas of functionality, which
determine the Node “flavors” (color coded in Figures 1 and 2):

· The Data Node (blue color, Figure 2) includes services for
secure data publication and access. Its main components
are the data Publisher application that generates the
metadata catalogs, the THREDDS and GridFTP servers
(with security filters at the front end) to serve the data, and
the OpenID Relying Party and Authorization Service to
ensure proper authentication and authorization.

· The Index Node (tan color, Figure 2) contains services for

indexing and searching metadata, currently implemented

using Apache Solr as the back-end server. The Web Portal

application provides a convenient browser-based interface

for system users and administrators, while the Dashboard

contains utilities that monitor and report on the state of

the federation. The Common Information Model (CIM)

Viewer is a plugin component that retrieves and displays

model metadata from CIM repository sources.

· The Identity Provider (light green color, Figure 2) allows

user authentication and secure delivery of user attributes.

It includes an OpenID Provider for browser-based

authentication, a MyProxy server for requesting limited-

lifetime user certificates, and Registration and Attribute

Services for distributed access control.

· The Compute Node (purple color, Figure 2) contains

higher-level services for data analysis and visualization.

Currently its only components are the Live Access Server,

the Ferret-THREDDS Data Server and the Ferret engine.

More analysis engines (e.g., Ultra-scale Visualization

Climate Data Analysis Tools (UV-CDAT)) are to be

added in the near future.
Additionally, each of these flavors always includes the

Node Manager, a web application that allows a Node to
continually exchange service and state information with all its
peers throughout the federation. Each Node can be configured
during installation to have one, more, or all of the flavors,
depending on the site specific needs. Furthermore, a site can
combine multiple Nodes configured for different flavors, to

Williams et al, 2012

https://books.google.com/books?hl=en&lr=&id=9rTMBQAAQBAJ&oi=fnd&pg=PA121&dq=ESGF+Williams&ots=8SseMbadfv&sig=EainP0uZs2mhkUCRX6mJyaeOWLQ#v=onepage&q&f=false

Example 2: HEP Experiment Data Analysis

NYSDS - MPO 6

RAW DATA

Event Summary

Analysis Object

Tags

5 MB

1 KB

Levels of HEP data

100 KB

1 MB

Event Catalog Wu, et al, 2005

http://escholarship.org/uc/item/8xc4m8r7.pdf

Information Lifecycle Management

• Policy

– Storage and processing policy, business objectives,

compliance with regulations

• Operations

– Storing and retrieving data records, archiving,

backup, recovery, retention, …

• Infrastructure

– Data centers, security, protection

NYSDS - MPO 7

Metadata and Provenance Capturing

NYSDS - MPO 8

• Approach: automated vs manual

• Level of detail: application, user program, system library

• Objects: data granularity, process

• Integration: how and when to fuse information collected from

different locations/systems

• Example system with extensive metadata capturing:

– Condor: Reilly & Naughton, 2009

– Kepler: Altintas et al, 2006

– FireWorks: Jain, et al, 2015

– ESGF: Williams et al, 2012

http://static.usenix.org/legacy/events/tapp09/tech/full_papers/reilly/reilly_html/
http://download.springer.com/static/pdf/55/chp:10.1007/11890850_14.pdf?originUrl=http://link.springer.com/chapter/10.1007/11890850_14&token2=exp=1471226531~acl=/static/pdf/55/chp:10.1007/11890850_14.pdf?originUrl=http://link.springer.com/chapter/10.1007/11890850_14*~hmac=cbb02d2544848f5a951a7cf3afcfea20d5528a0cc633f654ddd5e1881b350d45
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3505/full
https://books.google.com/books?hl=en&lr=&id=9rTMBQAAQBAJ&oi=fnd&pg=PA121&dq=ESGF+Williams&ots=8SseMbadfv&sig=EainP0uZs2mhkUCRX6mJyaeOWLQ#v=onepage&q&f=false

MPO Objectives: Document Scientific Workflow

• Provenance: Preserve meaning of data by documenting all of
the steps taken to produce the data

– Capture both data and process – automate as much as
 possible

– Support more systematic management of analysis and
simulation data

• Provide and preserve answers to two key questions:

– Where did a particular piece of data come from?

• Assumptions, inputs, parameters used for calculation

• The origin of inputs; reasons for assumptions & parameters

– Where was this data used?

• Other calculations

• Publication or presentation

• Contributions to databases

NYSDS - MPO 9

Use Cases Use Cases

• How did I get the data plotted in Fig.6 of my 2014 Phys.

Plasmas article?

• A calibration error was found in Thomson Scattering data

taken during 2011 - the data has now been recalculated.

– Where was the old data used?

– What publications used that data?

– Did we contribute that data to an international database?

• A recently graduated PhD student left behind output from

thousands of gyrokinetic simulations

– Which of these were used in her thesis?

– Which might be useful in the future?

– What were the inputs and parameters used in the interesting

runs?

NYSDS - MPO 10

Capabilities of the MPO System Capabilities of the MPO system

• Support all types of the scientific workflow – both
experimental and computational

– Typically involves processing of raw data, with small or large
codes whose output requires processing as well

• Allow users to record as much or as little info as they need

• Function in a heterogeneous environment and interoperate
with workflow tools people are already using

– Researchers use many different languages (Shell scripts,
Python, IDL, Matlab, etc.) and tools to get their work done

– Many different computing platforms – laptop to supercomputer

– Data is stored in different formats (MDSplus, HDF5, ASCII)

– It would be futile to insist that researchers change all of that to
get the benefits that we propose

• Once set up, needs to work as automatically as possible

– Best suited for scripted rather than one-time use

NYSDS - MPO 11

The MPO System is Based on a Multi-Tier

Software Architecture

NYSDS - MPO 12

Basic Components of the MPO System

• Database

– Captures metadata, location of data & all processing steps

• API server

– Mediates all communication with database

– Uniform language-independent interface for clients

• Interactive UI Server

– Provides interactive interface to discover and explore workflows

– Allows users to enter new comments about any object

• Event Server

– Enables automatic updates of workflow information

• Clients

– Instrument MPO calls

NYSDS - MPO 13

MPO System Entities and Data Model

• Data Object: Description of a data
including a pointer URI (Uniform
Resource Identifier)

• Activity : Any process that creates,
moves or transmutes data from one
form to another

• Workflow: A series of connected
Data Objects and Activities, which can
be organized as a Directed Acyclic
Graph (DAG)

• Connection: Internal data model to
represent DAGs.

• Metadata: Text-based, arbitrary
name-value pairs

• Comment: User annotation as
unstructured text

• Collection: Simple lists of Data
Objects, Collections, Workflows

NYSDS - MPO 14

MPO Objects Are Uniquely Identified

• Each MPO object is given a global unique numerical identifier

- UID (GUID/UUID) – Universally Unique ID (we use UUID v.4)

- 128 bit, pseudo random numbers ~1037 possible values

- Example: 08d2f5db-97d8-49c9-bd99-85303b07f9e2

• Data objects are also given a URI (Uniform Resource Identifier)

- The URI is the pointer to the data object - implies a persistent storage.

- URI includes the data protocol name and the path to the data.

- Examples: mdsplus:///magnetics/550335&path=\magnetics::ip, file://host.edu/path/to/file.h5

• Workflows also can be identified by composite ID that is easy to
remember (as opposed to UIDs)

- Examples: doej/EFIT/52, smitha/OMFIT/1002

• Searching is enhanced by defining a “controlled vocabulary”

- User-defined, hierarchical ontology

NYSDS - MPO 15

MPO and Persistent Data Store

• Underlying model is an assumption that data objects will be

maintained

– If the underlying data are allowed to change in untracked ways,

the descriptions and provenance are corrupted

– Data can be moved to a new location or converted to a new

format – as long as this is written down into MPO database

– MPO does not dictate the implementation of the persistent store

• Data objects can be a reference to a user’s file system

• Data objects can be a description of how to retrieve the item from

a database or record store or file

• A set of methods is available to manage data in a persistent

store in a manner consistent with maintaining the integrity of

MPO database

NYSDS - MPO 16

Extract Provenance from Recorded Metadata

• MPO records

information about

parent/child relationship

• Provenance information

is extracted from the

lineage information

def getTreePath(bottom, top):

get a connection, if a connect cannot be

made an exception will be raised here conn =

mypool.connect()

cursor =

conn.cursor(cursor_factory=psyext.RealDictCur

sor)

cursor.execute("with recursive

tree_depth(child_guid,parent_guid,path) as

(select

child_guid,parent_guid,child_guid||'.'||parent

_guid as path from workflow_connectivity

where child_guid=%s union all select

td.child_guid, c.parent_guid, td.path ||

c.parent_guid || '.' as path from

workflow_connectivity as c join tree_depth

as td on c.child_guid=td.parent_guid) select

path from tree_depth where

parent_guid=top",(bottom,top))

records = cursor.fetchall()

Close communication with the database

cursor.close()

conn.close()

return records

NYSDS - MPO 17

Visualize Provenance as DAG

• Directed Acyclic Graphs
(DAG) provide a
mathematical structure to
trace inheritance and
ancestry of provenance

• Ancestry
“What simulation results
used a particular input?”

• Inheritance
“What results were
affected by a bad
calibration?”

NYSDS - MPO 18

Enhanced “Controlled

Vocabulary” Search:
User-defined,

Hierarchical Ontology

Comments can be

inserted/viewed directly

on this listing page

Display related comments

Input a new comment

Interactive Search: Workflow List

NYSDS - MPO 19

List of nodes and their corresponding

details: UID, URI, metadata, comments,

other linked workflows

Blue nodes

are used in

other

workflows

Interactive Search: Workflow Details

NYSDS - MPO 20

Select to view details

Interactive Search: Collections List

NYSDS - MPO 21

Sample collection including multiple

workflows, multiple data objects and

another collection

Interactive Search: Collection Details

NYSDS - MPO 22

Programming API: a RESTful interface

• Clients only need HTTPS POST and GET

operations to access the MPO.

• Ease of implementation but puts complexity in API

server.

• Oriented around construction of URI resources

• Examples:

– GET /workflow?user=jwright

– POST /comment
{‘content’:’This is a comment’,’parent_uid’:’3d55-4…’}

– GET /workflow/:uid/graph

NYSDS - MPO 23

Programming API: Workflow Instrumentation

• Routes for workflow creation and annotation

– /workflow, /activity, /dataobject, /comment, /metadata

– Each route supports POST for object creation and GET:uid for
object retrieval

– Objects are encoded in JSON for POSTing and GETting

• POST /workflow
BODY: { "name":”GYRO”,
"description":”Important ITER run”}

• GET /metadata?work_uid=f20b23ec-aefb-481c-8c08-6443f
Returns: {"target_uid":” f20b23ec-aefb-481c-8c08-6443f”,
"key": “Te(kev)”,
"value": 3,
"uid": “e1b13f63-97ca-490d-9218-15c8f5cae1d5”,
"time": 2013-03-14 19:44:34.235565,
"uri": http://mpohost/metadata/e1b13f63-97ca-490d-9218-
15c8f5cae1d5)}

NYSDS - MPO 24

MPO Records Workflows on HPC Systems

• Example above is from a workflow to extract Atmospheric

Rivers from global climate simulation output

• This workflow was executed on Edison @ NERSC and

recorded on an external MPO server using the API over

HTTPS

NYSDS - MPO 25

Plans to Extend MPO

• Data and workflow discovery in an environment where a

modeling code or an experiment can generate large

collections of heterogeneous data of up to 10^10 objects.

• Metadata evolution with particular attention paid to schema

and ontology evolution

• Import/export workflows in standard formats (e.g. PROV)

• Provenance and structure inside more complex data objects.

EG array inside na HDF5 file or

a profile in the ITER IMAS database.

• Fine grained authorization

• UI methods for very large workflows

and real time monitoring.

NYSDS - MPO 26

Beyond MPO

• What to do when you can not

instrument the workflow?

• Can MPO be extended to say

something intelligent about the

shell script on the right?

#!/bin/bash

SCRIPT_NAME=$(basename $0)

log() {

 if [-f "$WORK_DIR/$LOG_FILE"]; then

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID:"$@" >> $WORK_DIR/$LOG_FILE

 else

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID: "$@" >&1

 fi

 if [-f "$WORK_DIR/driver_$ROOT_NODE.register.txt"]; then

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID:"$@" >> $WORK_DIR/driver_$ROOT_NODE.register.txt

 fi

 if [-f "$OUT_FILE"]; then

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID:"$@" >> $OUT_FILE

 fi

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID: "$@" >&1

}

err() {

 if [-f "$WORK_DIR/$LOG_FILE"]; then

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID: "$@" >> $WORK_DIR/$LOG_FILE

 else

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID: "$@" >&2

 fi

 if [-f "$ERR_FILE"]; then

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID: "$@" >> $ERR_FILE

 fi

 echo ̀ date`: ${SCRIPT_NAME}:${BASH_LINENO[0]}:$SLURM_JOBID: "$@" >&1

}

registerJob() {

 registerJob.sh insert INFO $H5_FILE_NAME $H5_FILE_SIZE "$@" 2>> $WORK_DIR/$LOG_FILE

}

registerSelf() {

 if [-n "$SLURM_JOBID"]; then

 registerJob.sh update INFO $H5_FILE_NAME $H5_FILE_SIZE "$@" 2>> $WORK_DIR/$LOG_FILE

 fi

}

registerStatus() {

 bar=(`echo $1`)

 if ["$2" = "0"]; then

 registerJob.sh insert OK $H5_FILE_NAME $H5_FILE_SIZE "${bar[@]}" 2>> $WORK_DIR/$LOG_FILE

 else

 registerJob.sh insert FAIL $H5_FILE_NAME $H5_FILE_SIZE "${bar[@]}" 2>> $WORK_DIR/$LOG_FILE

 fi

}

registerSelfStatus() {

 if [-n "$SLURM_JOBID"]; then

 bar=(`echo $1`)

 if ["$2" = 0]; then

 registerJob.sh insert OK $H5_FILE_NAME $H5_FILE_SIZE "${bar[@]}" 2>> $WORK_DIR/$LOG_FILE

 else

 registerJob.sh insert FAIL $H5_FILE_NAME $H5_FILE_SIZE "${bar[@]}" 2>> $WORK_DIR/$LOG_FILE

 fi

 fi

}

…..........

log "NUM_OF_DATASETS=$NUM_OF_DATASETS"

registerSelf $SLURM_JOBID driver $FACILITY $END_STATION $OWNER /$ROOT_NODE $NUM_OF_DATASETS

DATE=`date "+%Y%m%d_%H%M%S"`

log "PACK_DATE=$DATE"

FILE_NAME="${H5_FILE_NAME%.*}"

log "FILE_NAME=$FILE_NAME"

mpo_comment=""

for ((c=0; c<$NUM_OF_DATASETS; c++)); do

 str=${datasets[c]}

 mpo_comment=$mpo_comment" "$str

 mkdir -p "$WORK_DIR/fast-tomopy$str"

 mkdir -p "$WORK_DIR/norm$str"

 mkdir -p "$WORK_DIR/rot$str"

 #mkdir -p "$WORK_DIR/convert$str"

 mkdir -p "$WORK_DIR/sino$str"

 mkdir -p "$WORK_DIR/gridrec$str"

 mkdir -p "$WORK_DIR/rc-gridrec$str"

 mkdir -p "$WORK_DIR/imgrec$str"

 mkdir -p "$WORK_DIR/rc-imgrec$str"

 mkdir -p "$WORK_DIR/mbir$str"

 mkdir -p "$WORK_DIR/tomo$str"

done

[[-n $mpo_comment]] && cid=`$MPO comment $oid_h5_file "Datasets found:"$mpo_comment`

RECON_FLAVORS=("gridrec" "imgrec")

NUM_OF_RECON_FLAVORS=${#RECON_FLAVORS[@]}

H5_FLAVORS=("fast-tomopy" "norm" "sino" "gridrec" "imgrec" "raw" "rc-gridrec" "rc-imgrec")

H5_STAGES=("fast-tomopy" "norm" "sino" "gridrec" "imgrec" "raw" "rc" "rc")

H5_FLOWS=("/raw/fast-tomopy" "/raw/norm" "/raw/norm/sino" "/raw/norm/sino/gridrec" "/raw/norm/sino/imgrec" "/NO_RAWFLOW" "/raw/norm/sino/gridrec/rc"

"/raw/norm/sino/imgrec/rc")

H5_VERSIONS=("$FAST_TOMOPY_VERSION" "$NORM_VERSION" "$SINO_VERSION" "$GRIDREC_VERSION" "$IMGREC_VERSION" "NO_RAW_VERSION"

"$RC_VERSION" "$RC_VERSION")

NUM_OF_H5_FLAVORS=${#H5_FLAVORS[@]}

Stop h5 raw from being checked and/or submitted

since raw data is already packed ...

H5_JOB_IDS[5]="NOT_NEEDED"

H5_DEP_REGISTERED[5]="1" # Do not H5Pack the already packed H5 Raw from beamline/suitcase

H5_REGISTERED[5]="0"

Similarly for fast-tomopy

H5_JOB_IDS[0]="NOT_NEEDED"

H5_DEP_REGISTERED[0]="1" # Do not H5Pack the already packed H5 out of Fast-TomoPy

H5_REGISTERED[0]="1" #

GAL_FLAVORS=("gal" "jpgs" "render")

NUM_OF_GAL_FLAVORS=${#GAL_FLAVORS[@]}

#TURN OFF RAW GAL USEFUL WHEN TESTING

#GAL_JOB_IDS[12]="NOT NEEDED"

#GAL_REGISTERED[12]="0"

#GAL_REGISTERED[13]="0"

#GAL_REGISTERED[14]="0"

#GAL_JOB_IDS[0]="NOT NEEDED"

#GAL_REGISTERED[0]="0"

#GAL_REGISTERED[1]="0"

#GAL_REGISTERED[2]="0"

DONE=0

while [$DONE = 0]; do

 DONE=1

 log "Top of main loop"

 submitFastTomoPy

 submitGal

 submitPostGal

 submitH5

 submitRing

 submitRecon

 submitSino

 submitNorm

 ###

 # Check to see if the convert---.h5 are deleted.

 #submitTomo

 #submitConvert

 submitRot

 checkIfDone

 sleep 5

done

cleanupAndExit

NYSDS - MPO 27

Beyond Instrumentation: Utilize Job Logs

• Example on the

right: extracting

operational profile

from job logs

NYSDS - MPO 28

Nagappan, et al, 2009

http://dx.doi.org/10.1109/ISSRE.2009.23

Summary

• Funding agencies are demanding reproducible research

– MPO attempts to capture metadata and provenance of existing
distributed workflows

– Non-intrusive. Use what features you want.

– Augments your existing workflows - where ever they are.

• Production workflows have been MPO instrumented

– Tokamak Experiment Between Pulse Workflow at DIIID, Fusion
Simulations in SWIM and AToM frameworks, CASCADE project
from climatology

• Challenges/additional work

– Needs to manual instrumentation

– Manage otonology evolution

– Interoperate with other provenance systems

NYSDS - MPO 29

How to get started with MPO.

• mailto:mpo-info@fusion.gat.com

https://mpo.psfc.mit.edu

Select “Try MPO”, read the tutorial and try it out:

NYSDS - MPO 30

