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Outline

• Design computational experiments to utilize resources more effectively
• Research challenge in the design of resource management systems to support 

flexible and scalable experiments

• AIMES Model for dynamic resource utilization 
• Necessary condition for execution of adaptive workflows 

• Workflows: Biomolecular simulation algorithms that involve multiple ensembles.
• Science-based metrics of efficient resource utilization

• Building blocks approach for design and implementation of adaptive workflows?
• Design and implementation of RADICAL-Cybertools 
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● Larger biological systems
○ Requires weak scaling

● Long time scale problem
○ Requires strong scaling 
○ DE Shaw special purpose computer (Anton)

● Gap between weak and strong scaling capabilities 
will grow

Biomolecular (MD) Simulations: Context

3



Biomolecular (MD) Simulations: Context
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● Larger biological systems
○ Requires weak scaling

● Long time scale problem
○ Requires strong scaling 
○ DE Shaw special purpose computer (Anton)

● Gap between weak and strong scaling capabilities will 
grow
○ Investigate solutions beyond single-partition 

strong/weak scaling
○ Ensemble simulations 

● Given number of computing hours (= TA)  which is 
better:
○ Many simulations or longer running simulations?



Optimal Resource Utilization Configuration

● Given a finite number of computing hours (= TA)  which is better:
○ Many simulations or longer running simulations?

● How to divide TA across “many” simulations:
○ For given TA :  Greater NE

   or larger  tE   ?

5



Break free of the static resource utilization 
and execution models.

Optimal Resource Utilization Configuration

● Given a finite number of computing hours (= TA)  which is better:
○ Many simulations or longer running simulations?

● How to divide TA across “many” simulations:
○ For given TA :  Greater NE

   or larger  tE   ?
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Optimal Resource Utilization Configuration

● How to divide TA across “many” simulations:
○ For given TA :  Greater NE

   or larger  tE   ?
○ Non-adaptive (static) simulations vs adaptive simulations (replicas)?
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Optimal Resource Utilization Configuration

● How to divide TA across “many” simulations:
○ For given TA :  Greater NE

   or larger  tE   ?
○ Non-adaptive (static) simulations vs adaptive simulations (replicas)?
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● Fluctuations in the task execution time (Tx) of 
concurrent tasks. Should have same Tx! 
○ (Top) Molecular Dynamics (Gromacs)
○ (Middle) Athena-MP (ATLAS). 

Runtime Fluctuation 
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Runtime Fluctuation 

● Fluctuations in the task execution time (Tx) of 
concurrent tasks. Should have same Tx! 
○ (Top) Molecular Dynamics (Gromacs)
○ (Middle) Athena-MP (ATLAS). 

● Multiple contributing factors:
○ I/O and Lustre
○ Other shared resource contention

● Controlled experiments to isolate factors:
○ Smaller fluctuations when not using Lustre 

(middle). More than I/O!
○ Repeat experiment on same nodes (bottom): 

for some workflows, when is more important 
than where executed
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● AIMES Execution Model for how to map 
workloads onto dynamically varying 
heterogeneous resources, independent of type 
of infrastructural dynamism and heterogeneity.

● Decouple resource acquisition from workload 
assignment (late binding)
○ Requires dynamic integration of 

workload and resource information 
○ Beyond multi-level scheduling

● Execution strategy: Temporally ordered set of 
decisions that need to be made to execute a 
given workload.

AIMES  Execution Model 
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Turilli et al, IPDPS’16



Turilli et al, IPDPS’16

● TTC = Tx + Tq 
● Constrained to use same TA  and total number of cores

Dynamic Workload-Resource Assignment: XSEDE
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AIMES Execution Model 
● AIMES Execution Model for how to map 

workloads onto dynamically varying 
heterogeneous resources, independent of type 
of infrastructural dynamism and heterogeneity.

● Execution strategy: Temporally ordered set of 
decisions that need to be made to execute a 
given workload. 

● Generalize AIMES Execution model of late 
binding and dynamic integration of information, 
for “better” (?) and general mapping of 
workloads to HPC resources.
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Ensemble Toolkit (EnTK), VB et al, ICPP’16



      Adaptive Execution of (Ensemble) Workflows
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● Adaptive Execution: Changes made to the 
task-graph during runtime on the basis of results 
generated by executed sections of the task-graph. 
○ Cannot be fully enumerated a priori.

● Task: scale and granularity
○ Each task is an independent simulation
○ Task often interact (not a “bag-of-tasks”); 

degrees and levels of coupling
● Adaptive Execution: Types 

○ Task parameter(s), order, … 
○ Task count, iteration count, ...

Adaptive Execution 
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● Many biomolecular sampling algorithms formulated 
as adaptive algorithms/methods:
○ Replica-exchange
○ Expanded Ensemble 
○ Markov State Models 
○ …

● Adaptive algorithms/methods:
○ Scalable utilization of heterogeneous resources; 

address runtime fluctuations
○ Dynamic resource utilization a necessary 

condition for adaptive execution

Adaptive Execution of Biomolecular Workflows 
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Advanced Sampling: CoCo

● Better Sampling: Drive systems towards 
unexplored regions, prevent waste time sampling 
behaviour already observed
○ DM-d-MD (LSDMap)

● Collective Coordinates (CoCo): 
○ PCA-based unsupervised learning using 

reduced dimensionality 
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Sampling Quality: Classic versus Adaptive MD

● “Classic” Ensemble MD (Cyan) versus Adaptive MD (Magenta)
● All points use same TA by experiment design (though different NE and TE)

○ NE = 10, tE= 2 ns 19



Sampling Quality: Adaptive MD Configuration

● All points use same TA  by experiment design (though different NE and TE)
20



Sampling Quality: Single MD vs Adaptive Execution
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1000x ?



Building Blocks for Adaptive Workflows
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A Fresh Perspective on Workflow Systems?

● Initially workflow systems were monolithic  with “end-to-end” capabilities
○ Workflow systems were developed to support “big science” projects when 

software infrastructure was “fragile”, unreliable, missing services
○ Run many times, or many users: amortisation of development overhead

● Workflows aren’t what they used to be!
○ Diverse design points:  Automation, scale and sophistication
○ Pervasive and not confined to “big science”. Unlikely one size fits all.

● Need for agile, experimental and often unique workflows
○ The workflow is the (end-user) algorithmic innovation
○ End-users often developers (not of performance critical components)
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Requirements for Adaptive Execution
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● Fundamental support for ensembles and adaptive 
execution of ensembles
○ Wide range and types of adaptivity
○ Independent of specific MD engine

● Separate resource management details from 
execution patterns and algorithmic adaptivity
○ Dynamic resource utilization and late binding of 

workload

● Rather than adapt to a given workflow system, ask 
what requirements does this impose on workflow 
middleware systems?



Principled approach to the architectural design of middleware systems
● Software component agnostic towards architectural, coordination, and communication 

patterns, implemented in an arbitrary programming language, and exposed via an API.

○ Self-contained: Fully implements a well-defined set of functionalities and design 
does not depend on other building blocks.

○ Composable: Caller can compose functionalities from independent blocks.

○ Interoperable: Usable in diverse system architectures without semantic 
modification. Provides functionalities to every well-formed call. 

○ Extensible: Building block functionality and entities can be extended 

● Beyond modularity: a building block behaves like a black box where no assumptions 
are made on the design and implementation of the caller.

Building Blocks Approach 

Building blocks approach towards domain specific workflow systems? 
Jha and Turilli, https://arxiv.org/pdf/1609.03484.pdf 25



● Four Layers:
○ L4: Adaptive Algorithm/Method
○ L3: Workload Management (WMS)
○ L2: Task Run-time (TRS)
○ L1: Resource Access Layer

RADICAL-Cybertools: A Building Blocks Approach 
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● Four Layers:
○ L4: Adaptive Algorithm/Method
○ L3: Workload Management (WMS)
○ L2: Task Run-time (TRS)
○ L1: Resource Access Layer

● Abstractions & Building Blocks:
○ L1: RADICAL-SAGA  Distributed job 

submission & standard interface 
○ L2: RADICAL-Pilot (RP) Abstraction for 

Resource Management
○ L3: RADICAL-WLMS, Ensemble Toolkit

● Cross-layer: RADICAL-Analytics
○ Promote reproducibility & consistency

RADICAL-Cybertools: A Building Blocks Approach 
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● “.. a scheduling overlay which 
generalizes the reoccurring concept of 
utilizing a placeholder as a container 
for compute tasks”

● Decouples workload from resource 
management 

● Enables the fine-grained 
spatio-temporal control of resources 

● Build higher-level frameworks without 
explicit resource management 

● Provides building block for late-binding 
of workloads on HPC

L2: Pilot-Abstraction (P* Model)



Performance

○ RADICAL-Pilot design and implementation supports the efficient launch and 
management of  O(2K) tasks (of 300 seconds) over 64K cores. 29



● Agent communication layer (ZMQ) has 
limited throughput
○ Separate message channels
○ Bulk messages, operations 
○ Better scheduling algorithms
○ State information management: 

Challenges of O(100K+) Concurrent Tasks
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● Agent communication layer (ZMQ) has 
limited throughput
○ Separate message channels
○ Bulk messages, operations 
○ Better scheduling algorithms
○ State information management: 

● Interface with ORTE 
○ Isolated layer used by Open MPI to 

coordinate task layout
○ No ALPS concurrency limits

● Supports multiple tasks per node
○ Uses library calls instead of orterun 

processes

Challenges of O(100K+) Concurrent Tasks
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RADICAL-Cybertools: Building Blocks for Workflows

● A “laboratory” while supporting production grade 
workflows and workflow tools.
○ Consistent with HPC &  scale

● Integrate with existing tools:
○ Swift, Fireworks, PanDA, Binding Affinity 

Calculator (BAC)
○ Distinct points of integration, vertical 

integration and horizontal extensibility
○ Need “faster” start, “scalable” (more tasks) 

and “better” (resource utilization)
● Novel tools and libraries:

○ ExTASY, Replica-Exchange, Seisflow 
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RADICAL-Cybertools: Building Blocks for Workflows

HPC Resource

Server Resource

Fireworks
Launchpad

RP-Agent

Client Resource

Database Resource

Fireworks 
Database

RadicalPilot

FW 
Rocket

FW 
Rocket

Fireworks + RP: 
● Rockets start RP pilots on HPC hosts
● Rockets push tasks to RP for execution

● A “laboratory” while supporting production grade 
workflows and workflow tools.
○ Consistent with performance &  scale

● Integrate with existing tools:
○ Swift, Fireworks, PanDA, Binding Affinity 

Calculator (BAC)
○ Distinct points of integration, vertical 

integration and horizontal extensibility
○ Need “faster” start, “scalable” (more tasks) 

and “better” (resource utilization)
● Novel tools and libraries:

○ ExTASY, Replica-Exchange, Seisflow 
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Next-generation Adaptive Workflows

● INtegrated and Scalable 
PredIction of REsistance 
(INSPIRE)

● Middleware for Inference of 
Molecular Models (Kasson)
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Next generation Adaptive Workflows
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Summary

● Adaptive execution of biomolecular ensembles are useful &  important
○ Demonstrably better than “classic” simulations, but requires care
○ Challenging due to runtime fluctuations

● Proliferation of middleware systems for “workflows” unsustainable 
○ Distinctions are by-products of specific cyberinfrastructure implementations.
○ Substitute discussions of software with abstractions & execution models

● Building blocks approach to adaptive workflows
○ Focussed, principled design and development of middleware systems

● RADICAL-Cybertools: Engineered implementation of building blocks 
○ Multiple adaptive algorithms (replica-exchange, MSM, EE) 
○ Prototype and production of enhanced functionality: Swift, Fireworks, and PANDA 

(ATLAS), HT-BAC
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Thank you!
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● Contrary to traditional experiments, 
where resource utilization is static, 
can we identify a dynamic execution 
strategy (ES) (= size and time 
distribution of jobs requested)  so as 
to maximize probability of resource 
utilization?

● Estimate the utilization of an 
allocation time (TA core-hours) as a 
function of  time.
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