Building Blocks for Adaptive Workflows

Rutgers Advanced Dlstributed Cyberinfrastructure &
Applications Laboratory (RADICAL)



Outline

 Design computational experiments to utilize resources more effectively
 Research challenge in the design of resource management systems to support
flexible and scalable experiments

 AIMES Model for dynamic resource utilization
* Necessary condition for execution of adaptive workflows

 Workflows: Biomolecular simulation algorithms that involve multiple ensembles.
« Science-based metrics of efficient resource utilization

 Building blocks approach for design and implementation of adaptive workflows?
« Design and implementation of RADICAL-Cybertools



Biomolecular (MD) Simulations: Context

e Larger biological systems

o Requires weak scaling
e Long time scale problem

o Requires strong scaling

o DE Shaw special purpose computer (Anton)
e Gap between weak and strong scaling capabilities
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Biomolecular (MD) Simulations: Context

Larger biological systems

o Requires weak scaling
Long time scale problem

o Requires strong scaling

o DE Shaw special purpose computer (Anton)
Gap between weak and strong scaling capabilities will
grow

o Investigate solutions beyond single-partition

strong/weak scaling

o Ensemble simulations
Given number of computing hours (= T,) which is
better:

o Many simulations or longer running simulations?
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One long trajectory or...

fs ps ns us ms s

brute force - long contiguous in time MD 1§ ps/day!
requires: special purpose / unique hardware pER ~23 5K atoms
i.e. D.E. Shaw's Anton machine ’

...ensembles of
independent
simulations?

fs ps ns
AMBER on K40 GPUs
~190 ns/day per GPU




Optimal Resource Utilization Configuration

e Given a finite number of computing hours (= T,) which is better:
o Many simulations or longer running simulations?

e How to divide T, across “many” simulations:
o ForgivenT,: Greater N_ orlarger t_ 7
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Optimal Resource Utilization Configuration

e Given a finite number of computing hours (= T,) which is better:
o Many simulations or longer running simulations?

e How to divide T, across “many” simulations:
o ForgivenT,: Greater N_ orlarger t_ 7
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Optimal Resource Utilization Configuration

e How to divide T, across “many” simulations:
o ForgivenT,: Greater N_ orlarger t_ ?
o Non-adaptive (static) simulations vs adaptive simulations (replicas)?
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Optimal Resource Utilization Configuration

e How to divide T, across “many” simulations:
o ForgivenT,: Greater N_ orlarger t_ ?
o Non-adaptive (static) simulations vs adaptive simulations (replicas)?
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Runtime Fluctuation

e Fluctuations in the task execution time (Tx) of L
concurrent tasks. Should have same Tx! § :
o (Top) Molecular Dynamics (Gromacs) s g |
o (Middle) Athena-MP (ATLAS). o Wl . .
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Runtime Fluctuation

e Fluctuations in the task execution time (Tx) of L
concurrent tasks. Should have same Tx! b :
o (Top) Molecular Dynamics (Gromacs) he g .
o (Middle) Athena-MP (ATLAS). Y T I .
e Multiple contributing factors: T TREET T
o 1/O and Lustre R sk - Dbt exsction s

0.008

o Other shared resource contention

1200 1250 1300 1350 1400 1450 1500
Lustre - Distribution execution times
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Runtime Fluctuation

Fluctuations in the task execution time (Tx) of
concurrent tasks. Should have same Tx!

o (Top) Molecular Dynamics (Gromacs)

o (Middle) Athena-MP (ATLAS).
Multiple contributing factors:

o 1/O and Lustre

o Other shared resource contention
Controlled experiments to isolate factors:

o Smaller fluctuations when not using Lustre

(middle). More than I/O!

o Repeat experiment on same nodes (bottom):

for some workflows, when is more important
than where executed

e | H HUELH L TEELLH ORI HL

11



AIMES Execution Model

e AIMES Execution Model for how to map
workloads onto dynamically varying
heterogeneous resources, independent of type
of infrastructural dynamism and heterogeneity.

e Decouple resource acquisition from workload
assignment (late binding)

o Requires dynamic integration of
workload and resource information

o Beyond multi-level scheduling

e Execution strategy: Temporally ordered set of
decisions that need to be made to execute a
given workload.
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Turilli et al, IPDPS’16
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Dynamic Workload-Resource Assignment: XSEDE
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Turilli et al, IPDPS’16

e TTC-= TX + Tq
e Constrained to use same TA and total number of cores

TTC Late Uniform (Exp. 3)
3 pilots
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AIMES Execution Model

Replica Expanded Adaptive s i
Exchange ExLasy Ensemble MSM AP icdion
‘ Ensemble Toolkit API
e Execution strategy: Temporally ordered set of Ensemble Toolkit |
. Application | .. i Execution | __ | Resource ||Middleware
decisions that need to be made to execute a Manager Manager Manager
given workload. . 1 H
: Runtime :
: system !
LTt S———— i
e Generalize AIMES Execution model of late e SALUE TILLILI 5
binding and dynamic integration of information, Resource A Resource B Resource C | @
for “better” (?) and general mapping of > Workload - -» ResoUTce  __y Resource __, Intermediate
information bound tasks results

workloads to HPC resources.

Ensemble Toolkit (EnTK), VB et al, ICPP’16
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Adaptive Execution

e Adaptive Execution: Changes made to the
task-graph during runtime on the basis of results

generated by executed sections of the task-graph.

o Cannot be fully enumerated a priori.

e Task: scale and granularity

o Each task is an independent simulation

o Task often interact (not a “bag-of-tasks”);
degrees and levels of coupling

e Adaptive Execution: Types

o Task parameter(s), order, ...

o Task count, iteration count, ...

Stage 3

Stage 4
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Stop application
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within simulation
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Adaptive Execution of Biomolecular Workflows

e Many biomolecular sampling algorithms formulated
as adaptive algorithms/methods:

©)

©)

©)

©)

Replica-exchange
Expanded Ensemble
Markov State Models

e Adaptive algorithms/methods:

©)

Scalable utilization of heterogeneous resources;
address runtime fluctuations

Dynamic resource utilization a necessary
condition for adaptive execution
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Advanced Sampling: CoCo

e Better Sampling: Drive systems towards
unexplored regions, prevent waste time sampling
behaviour already observed

o DM-d-MD (LSDMap)

e Collective Coordinates (CoCo):
o PCA-based unsupervised learning using
reduced dimensionality

2 e g 2

LSDMap on the final points
of a swarm of trajectories

New swarm of trajectories
starting from “frontier point”,

"
g | g%
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Sampling Quality: Classic versus Adaptive MD
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e “Classic” Ensemble MD (Cyan) versus Adaptive MD (Magenta)
e All points use same T, by experiment design (though different N_ and T_)
o N.=10,t=2ns




Sampling Quality: Adaptive MD Configuration

volume sampled (ang™3)
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Sampling Quality: Single MD vs Adaptive Execution

Plot uflEE)E Shaw (Blue} & Extasy (Yellow) data in PCA 1 (x) PCA 3 (y) space

-

Backbone RMSD from native (A)

Simulated time {ms)

15
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Building Blocks for Adaptive Workflows
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A Fresh Perspective on Workflow Systems?

e |Initially workflow systems were monolithic with “end-to-end” capabilities
o Workflow systems were developed to support “big science” projects when
software infrastructure was “fragile”, unreliable, missing services
o Run many times, or many users: amortisation of development overhead

e Workflows aren’t what they used to be!
o Diverse design points: Automation, scale and sophistication
o Pervasive and not confined to “big science”. Unlikely one size fits all.

e Need for agile, experimental and often unique workflows
o The workflow is the (end-user) algorithmic innovation
o End-users often developers (not of performance critical components)
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Requirements for Adaptive Execution

Fundamental support for ensembles and adaptive
execution of ensembles

o Wide range and types of adaptivity

o Independent of specific MD engine

Separate resource management details from
execution patterns and algorithmic adaptivity
o Dynamic resource utilization and late binding of
workload

Rather than adapt to a given workflow system, ask
what requirements does this impose on workflow
middleware systems?
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Building Blocks Approach

Principled approach to the architectural design of middleware systems
e Software component agnostic towards architectural, coordination, and communication

patterns, implemented in an arbitrary programming language, and exposed via an API.

o Self-contained: Fully implements a well-defined set of functionalities and design
does not depend on other building blocks.

o Composable: Caller can compose functionalities from independent blocks.

o Interoperable: Usable in diverse system architectures without semantic
modification. Provides functionalities to every well-formed call.

o Extensible: Building block functionality and entities can be extended
e Beyond modularity: a building block behaves like a black box where no assumptions
are made on the design and implementation of the caller.

Building blocks approach towards domain specific workflow systems?
Jha and Turilli, https://arxiv.org/pdf/1609.03484.pdf

25



RADICAL-Cybertools: A Building Blocks Approach

e Four Layers:
o L4: Adaptive Algorithm/Method
o L3: Workload Management (WMS)
o L2: Task Run-time (TRS)
o L1: Resource Access Layer

26



RADICAL-Cybertools: A Building Blocks Approach

Four Layers:

@)
@)
©)
©)

L4: Adaptive Algorithm/Method

L3: Workload Management (WMS)
L2: Task Run-time (TRS)

L1: Resource Access Layer

Abstractions & Building Blocks:

O

O

O

L1: RADICAL-SAGA Distributed job
submission & standard interface

L2: RADICAL-Pilot (RP) Abstraction for
Resource Management

L3: RADICAL-WLMS, Ensemble Toolkit

Cross-layer: RADICAL-Analytics

O

Promote reproducibility & consistency

-
B

(Msa) mojpiiom

oy1oadg urewoq

: Tools and
Applications

Scientific
Workflows
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L2: Pilot-Abstraction (P* Model)

e “.. a scheduling overlay which 000000 Application

generalizes the reoccurring concept of Q00000

e . O00QO0O0
utilizing a placeholder as a container e
for compute tasks” User Workstation
Pilot Manager Unit Manager

e Decouples workload from resource

management Pilot Launcher Il Unit Scheduler
OO00 0O OCY)OOOOOO

e Enables the fine-grained

spatio-temporal control of resources il MongeDa
Resource A Resource B
e Build higher-level frameworks without pilot ! pilot
explicit resource management Agent Agent
] T . . Unit Execution v Unit Execution
e Provides building block for late-binding
of workloads on HPC




Performance

500 | Amber simulationg of the extasy workflow execgted on NCSA Bluewaters |
B sim execution time
400+
4
= 300 1
o
|9
Q
)
£ 200} ]
=
100t 1
0 256,8192 512,16384 1024,32768 2048,65536

No. of simulations, Cores (cores/sim = 32)

o RADICAL-Pilot design and implementation supports the efficient launch and
management of O(2K) tasks (of 300 seconds) over 64K cores. 29



Challenges of O(100K+) Concurrent Tasks

e Agent communication layer (ZMQ) has SAGA-API 1 MongoDB
limited throughput Resource
o Separate message channels S — e y o N
o Bulk messages, operations ;
o Better scheduling algorithms ORTE HNP
o State information management:

——

ORTE Daemon Node ORTE Daemon Node
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Challenges of O(100K+) Concurrent Tasks

Agent communication layer (ZMQ) has
limited throughput

O

O

O

O

Separate message channels
Bulk messages, operations
Better scheduling algorithms
State information management:

Interface with ORTE

O

©)

Isolated layer used by Open MPI to
coordinate task layout
No ALPS concurrency limits

Supports multiple tasks per node

O

Uses library calls instead of orterun
processes

SAGA-API A MongoDB
Resource

\ Login L / MOM

qsub Node Agent Node

v
ORTE HNP
/
<«——  Compute v Compute
ORTE Daemon Node ORTE Daemon Node
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RADICAL-Cybertools: Building Blocks for Workflows

A “laboratory” while supporting production grade

workflows and workflow tools.

@)

Consistent with HPC & scale

Integrate with existing tools:

O

Swift, Fireworks, PanDA, Binding Affinity
Calculator (BAC)

Distinct points of integration, vertical
integration and horizontal extensibility
Need “faster” start, “scalable” (more tasks)
and “better” (resource utilization)

Novel tools and libraries:

O

ExTASY, Replica-Exchange, Seisflow

L4

L3

L2

L1

Applications Workflows DSW
Synapse Swift ExTASY RepEx
Skeleton BAC Seisflow

Ensemble Toolkit F-
I
|
RADICAL-WLMS E---
D
[
- - — -1 [
RADICAL-Pilot -
l
€ — — — — I
RADICAL-SAGA = :
i I
T T T T s | |
\ 4 \4 A4
HPC Grids Clouds
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RADICAL-Cybertools: Building Blocks for Workflows

A “laboratory” while supporting production grade

workflows and workflow tools.

@)

Consistent with performance & scale

Integrate with existing tools:

O

Swift, Fireworks, PanDA, Binding Affinity
Calculator (BAC)

Distinct points of integration, vertical
integration and horizontal extensibility
Need “faster” start, “scalable” (more tasks)
and “better” (resource utilization)

Novel tools and libraries:

O

ExTASY, Replica-Exchange, Seisflow

Application |

Swift Script |

Swift Script

h

Execution M

Swift System

f

Application API | Swift Parser
‘ Execution Strategy ‘4!— Runtime
‘ Bundle API ‘4 Karajan Workflow Engine
3 Task Scheduler
Resource Bundle Coaster Provider
| Bundle Manager H Pilot Scheduler
re _{ Bundle Agent ‘ - ::t Resource Data
| 3 1|1 Providers Providers
I RADICAL-Pilot ti2a 2b
: ‘ Pilot API “'— 1M Resource (e.g. Stampede)
i ‘ Pilot Manager H Unit Manager ‘4[—} l»‘ SSH ‘
P ﬁ RADICAL-SAGA ‘ [ < Coaster Service i
' ] [
l 4 v ‘ Batch System 3
| DB Service | i
' |
! Resource (e.g. Stampede) .
|-+ SSH FJ D
| ‘ Batch System ‘4 i
! Job Job L
I Pilot Agent | || [ Pilot Agent |44-1 i
| i
! Z ‘
|| Resource (e.g. OSG Connect) ! : ‘ CE H CE l
Y SSH H o Job Job
] [ F Y Coaster Coasts
\ HTCondor 4 Worker Work
1
C e ] e« |
1 — A
= = — Database sel
Job Job ! = ssli-l RSRIS
‘ Pilot Agent ‘ ‘ Pilot Agent ‘<|- - Coaster protocol

b

Swift System

Runtime
AIMES Provider

AIMES Middleware

HTTP RESTful API

XSEDE |

33



RADICAL-Cybertools: Building Blocks for Workflows

A “laboratory” while supporting production grade
workflows and workflow tools.
o Consistent with performance & scale
Integrate with existing tools:
o Swift, Fireworks, PanDA, Binding Affinity
Calculator (BAC)
o Distinct points of integration, vertical
integration and horizontal extensibility
o Need “faster” start, “scalable” (more tasks)
and “better” (resource utilization)
Novel tools and libraries:
o EXTASY, Replica-Exchange, Seisflow

Fireworks + RP:
e Rockets start RP pilots on HPC hosts
e Rockets push tasks to RP for execution

Server Resource

Client Resource

000000000

Fireworks
Launchpad > (:)(:)(:)
( Q00
Fw Fw
Rocket Rocket \\
\\\\\ Database Resource
AN
RadicalPilot h Fireworks
OO Database
OO
HPC Resource
RP-Agent




RADICAL-Cybertools: Building Blocks for Workflows

e A “laboratory” while supporting production grade
workflows and workflow tools. e | T |
o Consistent with performance & scale ‘l
e Integrate with existing tools: &
o Swift, Fireworks, PanDA, Binding Affinity O i =0 =
Calculator (BAC) P — L
o Distinct points of integration, vertical e w \
integration and horizontal extensibility (
o Need “faster” start, “scalable” (more tasks) N
and “better” (resource utilization) e T
e Novel tools and libraries: -
— SiGARe]




RADICAL-Cybertools: Building Blocks for Workflows

e A “laboratory” while supporting production grade
workflows and workflow tools.

o Consistent with performance & scale |

e Integrate with existing tools:
o Swift, Fireworks, PanDA, Binding Affinity
Calculator (BAC)

o Distinct points of integration, vertical

integration and horizontal extensibility
o Need “faster” start, “scalable” (more tasks)

and “better” (resource utilization)
e Novel tools and libraries:
o EXTASY, Replica-Exchange, Seisflow

information

bound tasks

Replica Expanded Adaptive
Exchange BXTASY | [Ner et = MSM LR AL
Ensemble Toolkit API
Ensemble Toolkit
Application | ... Execution |, | Resource ||Middleware
Manager Manager Manager
° y 4
; Runtime \
system :
______________________ 1
I I I
....... R EEEEE DN C I I I ll
Resource A Resource B Resource C
Resources
- »Workload --» Resource » Resource . Intermediate

results

36



Next-generation Adaptive Workflows

: model parameter space model parameter space
Experiments P p P p

(systematic error

!

from setup) g L \
cw Y
B L2 £
Ensemble MD Simulations > ES g
(systematic error 2% €
from force-field) Inconsistent model distributions - Consistent model distributions

Bayesian inference

q

Multiple correlated . . Consensus model Consensus model
or inconsistent _Slmulahon and
experiments inference koL
0 IR g b
’\/\/\ IALANY & {hia

INtegrated and Scalable
Predlction of REsistance
(INSPIRE)

Middleware for Inference of

Molecular Models (Kasson)
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Next-generation Adaptive Workflows

. model parameter space i
Experlments model parameter space P P " dal W Maximum Entropy
Theoretical » . Real Systems
(systematic error A —P (biased model) (unbiased model)
= '
from setup) S- o vy Y
',jr:u © 8 Bayesian Statistics - Stochastic gradient descent optimization

Ensemble MD Simulations - £ § 5 v v

- —

. “= i i
(systemahc error o £ c Slmulahon-s Mgasurement.s
f f fi |d) . L. X c ) N S (full observation, (partial observation,
rom force-fie Inconsistent model distributions Consistent model distributions statistical error) noise)

Bayesian inference

IMM Middleware

Google [
Cloud
Platform [

Cloud API

q

Cloud Virtual Machines

.

Multiple correlated . . Consensus model Consensus model
or inconsistent _Slmulahon and
experiments inference \

Consensus model

e |Ntegrated and Scalable
Predlction of REsistance
(INSPIRE)

e Middleware for Inference of

Molecular Models (Kasson)
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Next generation Adaptive Workflows

Experiments
(systematic error
from setup)

model parameter space

!

Ensemble MD Simulations

(systematic error
from force-field)

 /

I
=

Information-
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inference

Inconsistent model distributions

model parameter space

Consistent model distributions

Bayesian inference

Multiple correlated
or inconsistent
experiments

<

Consensus model

Simulation and
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h 4 v
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(partial observation,
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Summary

e Adaptive execution of biomolecular ensembles are useful & important
o Demonstrably better than “classic” simulations, but requires care
o Challenging due to runtime fluctuations

e Proliferation of middleware systems for “workflows” unsustainable
o Distinctions are by-products of specific cyberinfrastructure implementations.
o Substitute discussions of software with abstractions & execution models

e Building blocks approach to adaptive workflows
o Focussed, principled design and development of middleware systems

e RADICAL-Cybertools: Engineered implementation of building blocks
o Multiple adaptive algorithms (replica-exchange, MSM, EE)
o Prototype and production of enhanced functionality: Swift, Fireworks, and PANDA
(ATLAS), HT-BAC



Thank you!
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Contrary to traditional experiments,
where resource utilization is static,
can we identify a dynamic execution
strategy (ES) (= size and time
distribution of jobs requested) so as
to maximize probability of resource
utilization?

Estimate the utilization of an
allocation time (T, core-hours) as a
function of time.

Total number of core hours (x10K)

Probability that T4 is consumed after t time units
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