
‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Comparative Study of Deep
Learning Frameworks in HPC

Environments

HamidReza Asaadi and Barbara Chapman
Institute for Advanced Computational Science

Stony Brook University,
Stony Brook, NY

New York Scientific Data Summit 2017

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Motivation
• Use of machine learning to solve scientific problems is growing rapidly

• As the size of datasets grows, so does potential size of computation
§ Need for ML frameworks that run efficiently on clusters that are

setup for typical scientific workload
§ For many scientists, ease-of-use is paramount

• Both HPC community and ML frameworks are investing heavily on GPUs
§ ML frameworks are being deployed in some in HPC

environments
§ But, how well do the frameworks exploit the resources and how

usable are they for domain scientists

Our immediate goal

• How compatible ML frameworks are (right-now) with typical HPC
clusters?

• What can be done to improve the compatibility of these frameworks?

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Agenda

• Introduction and Motivation

• Background and Test Setup
§ ML Frameworks
§ Datasets
§ Hardware Infrastructure

• Experimental Results

• Discussion and Future Work

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Target Frameworks

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Tensorflow

• Developed and maintained by Google
§ Initially released in late 2015

• Supports Linux, macOS, Windows, Android and iOS platforms

• Python API

• Designed to run on multiple CPUs and GPUs

• Multi-node distribution support is an afterthought
§ Modifications in the code is required
§ Launching a multi-node applications is not trivial
§ Performance drop is compare to single node execution

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

import numpy as np
import tensorflow as tf

Model parameters
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
Model input and output
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
training data
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):

sess.run(train, {x:x_train, y:y_train})

evaluate training accuracy
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

Source:	https://www.tensorflow.org/get_started/get_started

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

import numpy as np
import tensorflow as tf

Model parameters
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
Model input and output
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
training data
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):

sess.run(train, {x:x_train, y:y_train})

evaluate training accuracy
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

Source:	https://www.tensorflow.org/get_started/get_started

sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
sess.run(train, {x:x_train, y:y_train})

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

The Microsoft Cognitive Toolkit
(CNTK)

• Developed by Microsoft
§ Initially released in early 2016
§ Significant update in April, 2017 (v2.0)

• Supports multiple CPUs and GPUs and distribution using MPI

• Supports Linux and Windows

• API for Python, C++ and Java (added in CNTK 2.0)

• BrainScript DSL

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

TrainConvNet = {
action = "train"
BrainScriptNetworkBuilder = [

imageShape = 32:32:3
featScale = Constant(1/256)
labelDim = 3
model (features) = {

featNorm = Scale(features, featScale)
h1 = LinearLayer {100, init="gaussian", initValueScale=1.5} (featNorm)
ol = LinearLayer {labelDim, init="gaussian", initValueScale=1.5} (h1)

}.ol
inputs
features = Input {imageShape}
regrLabels = Input {labelDim}
apply model to features
ol = model (features)
define regression loss
diff = regrLabels - ol
sqerr = ReduceSum (diff.*diff, axis=1)
rmse = Sqrt (sqerr / labelDim)
featureNodes = (features)
labelNodes = (regrLabels)
criterionNodes = (rmse)
evaluationNodes = (rmse)
OutputNodes = (ol)

]
SGD = {

epochSize = 0
maxEpochs = 2
minibatchSize = 128
learningRatesPerSample = 0.0005
momentumAsTimeConstant = 1024
firstMBsToShowResult = 5 ; numMBsToShowResult = 50

} Source:	https://github.com/Microsoft/CNTK/blob/master/Examples/Image/Regression/RegrSimple_CIFAR10.cntk

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Caffe2

• Developed by Facebook research
§ Released in 2017

• Based on UC Berkley Caffe framework

• Supports multi-machine distribution via Gloo library
§ Supports fast interconnects and GPU Direct

• Python API
§ Makes original Caffe neural networks (.proto) unusable in Caffe2

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

def AddLeNetModel(model, data):
Image size: 28 x 28 -> 24 x 24
conv1 = brew.conv(model, data, 'conv1', dim_in=1, dim_out=20, kernel=5)
Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=50, kernel=5)
Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=50 * 4 * 4, dim_out=500)
fc3 = brew.relu(model, fc3, fc3)
pred = brew.fc(model, fc3, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
return softmax

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Comparison Task Scope

• Test case
§ Image classification
§ Inception V3 trainer network (48-layer deep network)

o Training with domain-specific data is common in scientific analysis
o E.g. Synchrotron imaging, weather forecast satellite imaging, etc.

§ Inception V3 trainer implementation is not yet available for
Caffe2
o No test results on Caffe2

• Test data
§ CIFAR-10
§ Flowers
§ ImageNet (ILSVRC 2012)

• Hardware platform
§ SBU Seawulf Cluster

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Datasets
Dataset Classes Training images Validation

images
CIFAR-10 10 50000 10000
ImageNet 1000 1,281,167 50000
Flowers 102 6150 1020

• Data transformation and repackaging
Original dataset data: folder structured (by label) JPEG/PNG files
Target input format:

o Tensorflow: tfrecords
o Caffe2: LMDB files
o CNTK: txt list pointer to files

Example: dataset/flowers/1/44235_1.png 1

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Seawulf Cluster

2 of 3 Frameworks required recompilation + several dependencies

Resource Limitations

• 2 GPU nodes can be assigned to one job (total of 16 GPUs)

• Maximum walltime for GPU nodes is 8 hours
§ Checkpointing must be used to train networks
§ We did not measure checkpointing overheads

Compute Nodes 164
Total CPUs/Total Cores 324/4592

GPU 8 nodes / total 64x GK210 (K40)
Cores/ 159,744 CUDA cores

Memory 128 Gb/Node

Interconnect Infiniband @40Gbps

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Test Environment Summary

Dataset Single-Node Multi-Node
CIFAR-10 Yes No
ImageNet Yes No
Flowers Yes Yes

Frameworks under test CNTK (v2.0), Tensorflow (v.1.0.1)
Datasets CIFAR-10, ImageNet (2012), Flowers
Test time 8 hours
Number of nodes 1 or 2

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Agenda

• Introduction and Motivation

• Background and Test Setup
§ ML Frameworks
§ Datasets
§ Hardware Infrastructure

• Experimental Results

• Discussion and Future Work

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30
Ti

m
e

(s
)

Epoch number

Tensorflow CNTK

CIFAR-10 Dataset Results

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30

Lo
ss

 fu
nc

tio
n

Epoch number

Tensorflow CNTK

Loss function/Epoch Time/Epoch

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

ImageNet Dataset Results

0

20000

40000

60000

80000

100000

120000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Lo
ss

 fu
nc

tio
n

Minibatch number

Tensorflow CNTK

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Ti

m
e

(s
)

Minibatch number

Tensorflow CNTK

Loss function/Minibatch Time/Minibatch

Dataset Classes Training images Validation
images

ImageNet 1000 1,281,167 50000

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Loss function/Epoch

Flowers Dataset Results (Single Node)

0

50

100

150

200

250

300

350

0 50 100 150 200 250
Ti

m
e

(s
)

Epoch number

Tensorflow CNTK

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250

Lo
ss

 F
un

ct
io

n

Epoch number

Tensorflow

CNTK

Time/Epoch

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Launching Tensorflow and CNTK on 2 nodes

while IFS='' read -r line || [[-n "$line"]]; do

if [$NODES]; then

NODES=$NODES","

SLAVE_NODE=$line

else

PS_NODE=$line #this is the ps node as well (num = 0)

fi

NODES=$NODES"$line:2222"

done < "$PBS_NODEFILE"

source activate tensorflow

SLAVE_CMD="python /gpfs/home/hasaadi/tensorflow/models/inception/flowers_distributed_train.py
--batch_size=32 --data_dir=/gpfs/scratch/hasaadi/flowers \
--train_dir=/gpfs/scratch/hasaadi/flowers-train --job_name='worker' \
--task_id=1 --ps_hosts=$PS_NODE:2223 --worker_hosts=$NODES 2>&1 >> slave.out"

ssh $SLAVE_NODE "module add cudnn/5.1; module add cuda80/toolkit/8.0.44; module add anaconda/3;
source activate tensorflow; $SLAVE_CMD" 2>&1 >> ssh.out &

Tensorflow

CNTK

mpiexec --npernode 8 cntk configFile=InceptionV3.cntk

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Flowers Dataset Results (2 Nodes)

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120 140 160 180

Lo
ss

 fu
nc

tio
n

Epoch number

Tensorflow

CNTK

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100 120 140 160 180
Ti

m
e

(s
)

Epoch number

Tensorflow

CNTK

Loss function/Epoch Time/Epoch

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Findings and conclusion

• CNTK provides broader programming language support in addition to
higher convenience for non-expert users

• CNTK demonstrated the best performance in our tests

• Both tested frameworks showed poor performance when running on
multiple machines

• Out of 3 frameworks, only CNTK supports launching jobs using ‘mpiexec’
§ Cluster resource managers cannot used out-of-the-box to

manage ML and BigData frameworks
§ Better tool support is required for BigData usecases

• All three frameworks are under very active development

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Future work

• Provide binary distributions compatible with typical HPC environments

• Develop tools to facilitate launching and management of ML and
BigData frameworks on HPC clusters

Longer term goal

To provide domain scientists with tools required for solving very large
deep learning problems at scale.

‘

Comparative Study of Deep Learning Frameworks in HPC Environments

Comparative Study of Deep
Learning Frameworks in HPC

Environments

HamidReza Asaadi and Barbara Chapman
Institute for Advanced Computational Science

Stony Brook University,
Stony Brook, NY

New York Scientific Data Summit 2017

