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Motivation
• Use of machine learning to solve scientific problems is growing rapidly 

• As the size of datasets grows, so does potential size of computation
§ Need for ML frameworks that run efficiently on clusters that are 

setup for typical scientific workload
§ For many scientists, ease-of-use is paramount

• Both HPC community and ML frameworks are investing heavily on GPUs
§ ML frameworks are being deployed in some in HPC 

environments
§ But, how well do the frameworks exploit the resources and how 

usable are they for domain scientists

Our immediate goal

• How compatible ML frameworks are (right-now) with typical HPC 
clusters? 

• What can be done to improve the compatibility of these frameworks?
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Agenda

• Introduction and Motivation

• Background and Test Setup
§ ML Frameworks
§ Datasets
§ Hardware Infrastructure

• Experimental Results

• Discussion and Future Work
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Target Frameworks
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Tensorflow

• Developed and maintained by Google
§ Initially released in late 2015

• Supports Linux, macOS, Windows, Android and iOS platforms

• Python API

• Designed to run on multiple CPUs and GPUs

• Multi-node distribution support is an afterthought
§ Modifications in the code is required
§ Launching a multi-node applications is not trivial
§ Performance drop is compare to single node execution
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import numpy as np
import tensorflow as tf

# Model parameters
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-.3], dtype=tf.float32)
# Model input and output
x = tf.placeholder(tf.float32)
linear_model = W * x + b
y = tf.placeholder(tf.float32)
# loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
# optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
# training data
x_train = [1,2,3,4]
y_train = [0,-1,-2,-3]
# training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):

sess.run(train, {x:x_train, y:y_train})

# evaluate training accuracy
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x:x_train, y:y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

Source:	https://www.tensorflow.org/get_started/get_started
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The Microsoft Cognitive Toolkit 
(CNTK)

• Developed by Microsoft
§ Initially released in early 2016
§ Significant update in April, 2017 (v2.0)

• Supports multiple CPUs and GPUs and distribution using MPI

• Supports Linux and Windows

• API for Python, C++ and Java (added in CNTK 2.0)

• BrainScript DSL
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TrainConvNet = {
action = "train"
BrainScriptNetworkBuilder = [

imageShape = 32:32:3
featScale = Constant(1/256)
labelDim = 3
model (features) = {

featNorm = Scale(features, featScale)
h1 = LinearLayer {100, init="gaussian", initValueScale=1.5} (featNorm)
ol = LinearLayer {labelDim, init="gaussian", initValueScale=1.5} (h1)

}.ol
# inputs
features = Input {imageShape}
regrLabels = Input {labelDim}
# apply model to features
ol = model (features)
# define regression loss
diff = regrLabels - ol
sqerr = ReduceSum (diff.*diff, axis=1)
rmse = Sqrt (sqerr / labelDim)
featureNodes = (features)
labelNodes = (regrLabels)
criterionNodes = (rmse)
evaluationNodes = (rmse)
OutputNodes = (ol)

]
SGD = {

epochSize = 0
maxEpochs = 2
minibatchSize = 128
learningRatesPerSample = 0.0005
momentumAsTimeConstant = 1024
firstMBsToShowResult = 5 ; numMBsToShowResult = 50

} Source:	https://github.com/Microsoft/CNTK/blob/master/Examples/Image/Regression/RegrSimple_CIFAR10.cntk
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Caffe2

• Developed by Facebook research
§ Released in 2017

• Based on UC Berkley Caffe framework

• Supports multi-machine distribution via Gloo library
§ Supports fast interconnects and GPU Direct

• Python API
§ Makes original Caffe neural networks (.proto) unusable in Caffe2
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def AddLeNetModel(model, data):
# Image size: 28 x 28 -> 24 x 24
conv1 = brew.conv(model, data, 'conv1', dim_in=1, dim_out=20, kernel=5)
# Image size: 24 x 24 -> 12 x 12
pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)
# Image size: 12 x 12 -> 8 x 8
conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=50, kernel=5)
# Image size: 8 x 8 -> 4 x 4
pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)
# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size
fc3 = brew.fc(model, pool2, 'fc3', dim_in=50 * 4 * 4, dim_out=500)
fc3 = brew.relu(model, fc3, fc3)
pred = brew.fc(model, fc3, 'pred', 500, 10)
softmax = brew.softmax(model, pred, 'softmax')
return softmax
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Comparison Task Scope

• Test case
§ Image classification
§ Inception V3 trainer network (48-layer deep network)

o Training with domain-specific data is common in scientific analysis
o E.g. Synchrotron imaging, weather forecast satellite imaging, etc.

§ Inception V3 trainer implementation is not yet available for 
Caffe2
o No test results on Caffe2

• Test data
§ CIFAR-10
§ Flowers
§ ImageNet (ILSVRC 2012)

• Hardware platform
§ SBU Seawulf Cluster
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Datasets
Dataset Classes Training images Validation

images
CIFAR-10 10 50000 10000
ImageNet 1000 1,281,167 50000
Flowers 102 6150 1020

• Data transformation and repackaging
Original dataset data: folder structured (by label) JPEG/PNG files
Target input format:

o Tensorflow: tfrecords
o Caffe2: LMDB files
o CNTK: txt list pointer to files

Example: dataset/flowers/1/44235_1.png 1
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Seawulf Cluster

2 of 3 Frameworks required recompilation + several dependencies

Resource Limitations

• 2 GPU nodes can be assigned to one job (total of 16 GPUs)

• Maximum walltime for GPU nodes is 8 hours
§ Checkpointing must be used to train networks
§ We did not measure checkpointing overheads

Compute Nodes 164
Total CPUs/Total Cores 324/4592

GPU 8 nodes / total 64x GK210 (K40)
Cores/ 159,744 CUDA cores

Memory 128 Gb/Node

Interconnect Infiniband @40Gbps
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Test Environment Summary

Dataset Single-Node Multi-Node
CIFAR-10 Yes No
ImageNet Yes No
Flowers Yes Yes

Frameworks under test CNTK (v2.0), Tensorflow (v.1.0.1)
Datasets CIFAR-10, ImageNet (2012), Flowers
Test time 8 hours
Number of nodes 1 or 2
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Agenda

• Introduction and Motivation

• Background and Test Setup
§ ML Frameworks
§ Datasets
§ Hardware Infrastructure

• Experimental Results

• Discussion and Future Work
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ImageNet Dataset Results
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Loss function/Epoch

Flowers Dataset Results (Single Node)
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Launching Tensorflow and CNTK on 2 nodes

while IFS='' read -r line || [[ -n "$line" ]]; do

if [ $NODES ]; then

NODES=$NODES","

SLAVE_NODE=$line

else

PS_NODE=$line #this is the ps node as well (num = 0)

fi

NODES=$NODES"$line:2222"

done < "$PBS_NODEFILE"

source activate tensorflow

SLAVE_CMD="python /gpfs/home/hasaadi/tensorflow/models/inception/flowers_distributed_train.py
--batch_size=32 --data_dir=/gpfs/scratch/hasaadi/flowers \
--train_dir=/gpfs/scratch/hasaadi/flowers-train --job_name='worker' \
--task_id=1 --ps_hosts=$PS_NODE:2223 --worker_hosts=$NODES 2>&1 >> slave.out"

ssh $SLAVE_NODE "module add cudnn/5.1; module add cuda80/toolkit/8.0.44; module add anaconda/3; 
source activate tensorflow; $SLAVE_CMD" 2>&1 >> ssh.out &

Tensorflow

CNTK

mpiexec --npernode 8 cntk configFile=InceptionV3.cntk
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Flowers Dataset Results (2 Nodes)
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Findings and conclusion

• CNTK provides broader programming language support in addition to 
higher convenience for non-expert users

• CNTK demonstrated the best performance in our tests

• Both tested frameworks showed poor performance when running on 
multiple machines

• Out of 3 frameworks, only CNTK supports launching jobs using ‘mpiexec’
§ Cluster resource managers cannot used out-of-the-box to 

manage ML and BigData frameworks
§ Better tool support is required for BigData usecases

• All three frameworks are under very active development
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Future work

• Provide binary distributions compatible with typical HPC environments

• Develop tools to facilitate launching and management of ML and 
BigData frameworks on HPC clusters

Longer term goal

To provide domain scientists with tools required for solving very large 
deep learning problems at scale. 
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