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More is Better

CT:hard-tissue; T2(MRI):soft tissue; PET: functional characteristics '

'Boss, A. and et al. (2010). Hybrid PET/MRI of Intracranial Masses: Initial
Experiences.and Comparison to PET/CT, JNM
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Tomographic Image Reconstruction

» Non-invasive imaging technique to visualize internal
structures of object.

» Tomography applications: physics, chemistry, astronomy,
geophysics, medicine, etc.

» Tomographic imaging modalities: X-ray transmission,
ultrasound, magnetic resonance, X-ray fluorescence, etc.

» Task: estimate distribution of physical quantities in sample
from measurements.

» Limited angle tomography reconstruction is naturally
ill-conditioned.
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Schematic Experimental Setup with Two Modalities

m e
3 v

Ejected K-shell electron o XRT sinogram

Incident Radiation 10"
3 5

X-ray Source

H:H el

K, xray a2
emitted
n
M-shell electron 3.8

fills vacancy

)
g
g

Intensity (counts/sec

XRF Spectra

40

a 7137



Reconstruction Approaches

» Traditional: filtered backprojection

» Restricted to simple tomographic model
» Requires a large number of projections

» Alternatively, iterative reconstruction from single data
modality

» Requires much less data acquisition, results in higher
accuracy

Our Goal:

Formulate a joint inversion integrating XRF and XRT data to
improve the reconstruciton quality of elemental map.
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X-ray Transmission (XRT)

Ray-Sum

» Traditionally, the XRT projection of the
object from beam line (6, 7) is modeled as

Fi (i) = lhexpd = " Lyjif ¢ . \
v

to directly solve the linear attenuation
coefficient /i for each voxel v,

)

> In our approach,notice iy = » Wy e/,
e

Ip: incident photon flux

Hé:i mass attenuation coefficient of element
e € & at beam incident energy £

T E
F97T(W) == /0 eXp - Z LV,U/e Wv7e W = W, e: tensor denoting how much

of element e is in voxel v
v.e

L = [Ly]: tensor of intersection length
of beam line (0, ) with the voxel v

B 10/37



X-ray Fluorescence (XRF)
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Mathematical Model of XRF

» First, we obtain the unit fluorescence

SpeC’[rum \ Inm%:fn:-ray .
3 Rotatio
1 _)(2 § é el
M = F_1 F I F —eX —_— %% QU 'ulLl
) ( o) x (U\/27r p{zﬂ}));g =
» Then, the XRF spectrum, Fg‘r N XRT detect

LVWV eMe
= 3 EeMe gt S o (W LT+ 1P
v,e,d Mg v’,e

P =[P, ,/ g4l tensor of intersection length of fluorescence detectorlet path d with the voxel v/
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Resulting Optimization: Joint Reconstruction (JRT)

Goal:
Find W so that F§_(W) = Dg_and Fj (W) = Dy,

min 60%) = 3 (5 |[FE v~ oL |+ 5 [FE. o) - a0,
6,7

w>0

)

> D(’fj € R": measurement data of XRF signal detected at angle
6 from light beam =

where

> D;T € R: the measurement data of XRT signal detected at angle
6 from light beam 7

> (1, B2 > 0 are scaling parameters to balance the ability of each
modality to fit the data, and detect the relative variability between
the data sources.

Note: Optimization differs on how Ff_and F/ _ are combined
a
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How Multimodality Can Help
Consider an overdetermined (more equations than the
number of unknowns) but rank deficient system which has an
infinitude of solutions:

12 X 1
2 4 [X‘] =2
051] 72 0.5

Another such rank-deficient (not full-rank) system:

23 X1 1.5

46| [xo |3
However, combine these two can form a full rank and
consistent system with a unique solution x

12 1
2 4) 2
0.5 1 M = |05
2 3| 72 15
4 6 3
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Optimization Solver

In experiments, we use truncated-Newton (TN) method with
preconditioned conjugate gradient (PCG) to provide a search
direction:

» To satisfy the bound constraints, the projected PCG is
applied to the reduced Newton system

» One TN iteration typically requires x(O(10)) PCG
iterations

Main expense of each outer iteration is « + 2 function-gradient
evaluations.

16/37
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JRT versus Single XRF Reconstruction (Synthetic)’
Ga Fe ||Error||1

True

XRF Guess Solution

1L
ENEEE
EENEE

Initial

Element Unit: g/um?

Single

XRT

JRT

'Di, Leyffer, and Wild (2016). An Optimization-Based Approach for

Tomographic.lnversion from Multiple Data Modalities, SIAMIS
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Addressing Self-Absorption Effect

] Au
W9 _|_ Q%: — 0.5
Au g_i‘ o)
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'Di and et al. (2017). Joint reconstruction of x-ray fluorescence and

transmission.tomography, Optics Express
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Motivation
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Multilevel Acceleration of Image Registration

Muliilevel:
10sec

Level 1: 50 x 50

/

Level 2: 25 x 25

Single Level:
150sec

Level 3: 13 x 13

/

Level 4: 7x7
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Introduction of MG/OPT

» Multigrid optimization algorithm (MG/OPT) is a general
framework to accelerate a traditional optimization
algorithm?.

» Recursively use coarse problems to generate search
directions for fine problems.

» MG/OPT can deal with more general problems in an
optimization perspective, in particular, it is able to handle
inequality constraints in a natural way.

» Multiple options to design the hierarchy of the problem:

» through image space.
» through data space.

"Nash, S. G. (2000). A Multigrid Approach to Discretized Optimization

Problems, OMS
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MG/OPT

Given:

>

High-resolution model f,(z5), easier-to-solve low-resolution model
fH(ZH)

> z" + OPT(f(2),Z, k)

> A restriction operator /// and an interpolation operator I/}

> An initial estimate 2 of the solution z;; on the fine level

> Integers ki and k; satisfying ki + k2 > 0
Presmoothing: Postsmoothing:
Zy « OPT(f, (24), 2, k1) Z, " < OPT(f,(24), 25, k2)

Restrictzy = 1'z, Interpolate e, = Ile,

=V, 2y — vafh(i,,) Correct z;; =Z, +ae;, by a line search

\ ey = Zj — Zy /
o>

Recursion: zi, « OPT(f,;(zy) — 8" 2y, 2, k) 27/37
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 —
Interpolation/Restriction Operators

» Restriction on 2D parameter W), € R? to produce Wy
using full weighted matrix:

1/16 o o'/% o 1/16
1/4

1/8 ¢4 1/8

1/16 1/8 o 1/16

2i—-1 22 2141
> Restriction on gradient 7/ = C If where C balances the
order difference between ¢,(W),) and ¢H(lﬁwh)

> Interpolation operator: I} = 4(/")T.
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Coarse Grid Surrogate Model

» Shift experimental data for coarse level:

B, =Dy, — (F) (Ws) — FyL(IfW)))

The surrogate model:

5w = 5 (3 [Fiovi) -8, )

_ . T
- (V(Z)H(//’;Iwh) — /#V%(Wh)) Wy
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-
MG/OPT Search Directions versus Error

Problem Size: [33 17]

Fine-Level Error Interpolated Coarse-Level Error
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2-level MG/OPT Reconstruction
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Reconstruction Error Reduction
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Summary

» Established a link between X-ray transmission and X-ray
fluorescence datasets by reformulating their corresponding
physical models.

» Developed a simultaneous optimization approach for the
joint inversion, and achieved a dramatic improvement of
reconstruction quality with no extra computational cost.

» Proposed a multigrid-based optimization framework to
further reduce the computational cost of the reconstruction
problem.

» Preliminary results show that coarsening in voxel space
improves accuracy/speed.
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Making More of More

» Extend our multimodal analysis tool to data from different
instruments, involving varying spatial resolution and
contrast mechanisms.

» Guided by the hierarchical nature of our multilevel
algorithm, we will investigate new data acquisition
strategies and allow for flexible and adaptive sampling
approaches.

» Enable true real-time feedback.
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