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First Challenge
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Building parameterizations that 
encapsulate sub-scale 

behaviours that are not explicitly 
resolved. 
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Remote Sensing



Goddard Institute for
Space Studies

Comparison of vertical profile of cloud 
water content against CloudSat

Cloud Water
v. Ocean Temperature

Cloud Water
v. Vertical motion



Multiple, diverse single column case 
studies: LES—> SCM —> GCM

Conditions Case study

dry convective boundary layer idealized [Bretherton and Park 2009]

dry stable boundary layer GABLS1 [Bretherton and Park 2009]

marine stratocumulus DYCOMS-II RF02 [Ackerman et al. 2009]

marine trade cumulus (shallow) BOMEX [Siebesma et al. 2003]

marine trade cumulus (deep, raining) RICO [van Zanten et al. 2011]

marine stratocumulus-to-cumulus transition SCT [Sandu and Stevens 2011]

continental cumulus RACORO [Vogelmann et al. 2015]

Arctic mixed-phase stratus M-PACE [Klein et al. 2009]

mid-latitude synoptic cirrus SPARTICUS [Mühlbauer et al. 2014]

tropical deep convection TWP-ICE [Fridlind et al. 2012]

continental deep convection EUROCS II [Guichard et al. 2004]



Goddard Institute for
Space Studies

Stratocumulus to trade-cumulus transition

LES E2.1

E3 alpha E3 



Goddard Institute for
Space Studies

Representation of Volcanic Forcings

NINT

Offline Ozone and Aerosol fields are read in

MATRIX                     

Interactive Chemistry and aerosol microphysical scheme 
[Mass, Number, Mixing State] 

OMA

Interactive Chemistry and aerosol scheme
[Mass]



Second Challenge
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Evaluation of the emergent 
properties of the simulations



Big improvements in representation of MJO
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:

(Wheeler-Kiladis diagrams extended from Kim et al, 2012) 

data are from the International Best Track Archive
for Climate Stewardship (IBTrACS) dataset (Knapp
et al. 2010).

3. Simulations of the MJO using Model E2

a. Simulations of the MJO in AR4 and AR5 versions
of Model E2

Following Wheeler and Kiladis (1999), wavenumber–
frequency diagrams are constructed to determine the
capability of the models to simulate convectively cou-
pled equatorial waves and the MJO. Figure 3 shows the
symmetric wavenumber–frequency power spectra [nor-
malized by estimated background power, Wheeler and
Kiladis (1999)] of equatorial precipitation from obser-
vations and several versions of Model E2. Our focus is
on the signals distinct from the background spectrum in

the Kelvin, equatorial Rossby wave, and MJO bands
(the last being defined as wavenumbers 1–3, periods 30–
60 days) that can be found in the observations (Fig. 3a).
The most significant improvement that AR5a has com-
pared to AR4a is its simulation of the Kelvin mode. The
Kelvin mode in AR5a is similar to that in observations in
both its amplitude and phase speed; the implied equiv-
alent depth is about 25 m. Compared to AR5a, AR4a
has a much weaker and faster Kelvin mode, which is also
mostly confined to high frequencies (i.e., periods less
than 7 days). Despite these improvements, AR5a still
lacks the MJO mode.

Figure 3 also contains the symmetric components of
the wavenumber–frequency spectra of equatorial pre-
cipitation from the different versions of Model E2. The
C_AR5a (Fig. 3d) represents a version of Model E2 that
uses higher horizontal resolution than that in AR5a by

FIG. 3. Space–time spectrum of the 158N–158S symmetric component of precipitation divided by the background spectrum for
(a) GPCP, (b) AR4a, (c) AR5a, (d) C_AR5a, (e) AR5c, (f) AR5a_Ent1, (g) AR5a_Ent1_Re, and (h) AR5a_Ent2_Re. Superimposed are
the dispersion curves of the odd-numbered meridional mode equatorial waves for the equivalent depths of 12, 25, and 50 m.
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a 2D phase space of the two leading PCs from the CEOF
analysis. In this 2D phase space, distance from the or-
igin represents amplitude of the MJO. The strong-MJO
event occurs during March–April 2000 in the simulation.
Hovmöller diagrams of total, anomalous (deviations
from the seasonal cycle) and 20–100-day filtered equa-
torial (158S–158N) precipitation show the eastward pro-
pagation of organized precipitation anomalies with phase
speed ; 5 m s21 during this period (Fig. 11). Daily restart
files are saved during the period of this event and used to
initialize the 30-day integrations of AR5a. Note that we
use restart files during February–May 2000 to encompass
the whole strong-MJO period.

During the course of the 30-day integration, the
AR5a version systematically deviates from the AR5a_Ent1
version. Figure 12a shows the composite deviations of the
tropospheric temperature from the first day of simulation. It
indicates that the tropical atmosphere becomes stabilized
(warmer upper/colder lower troposphere) gradually
until day 30. The warming aloft is greater than the
cooling below so that the mass-weighted average of

tropospheric temperature increases (Fig. 12b). The rel-
ative humidity (Fig. 12c) and precipitable water (Fig.
12d) also increase. These systematic changes caused by
the decreasing entrainment rate (from AR5a_Ent1 to
AR5a) can be characterized as enhanced stability in the
tropics. This result is consistent with those of Kim et al.
(2011b), who showed that models with stronger MJOs
also had a cold bias in the upper troposphere relative to

FIG. 9. Phase–longitude diagram of OLR [contour plotted every 3 W m22, positive (green) and negative (purple)] and surface evap-
oration (W m22)/ 925-hPa moisture convergence (kg kg21 s21) for (a), (c) observations, and (b), (d) AR5a_Ent1. Phases are from the
MJO life cycle composite; values are averaged between 108S and 108N.

FIG. 10. Schematic diagram of the reinitialization experiment.
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data are from the International Best Track Archive
for Climate Stewardship (IBTrACS) dataset (Knapp
et al. 2010).

3. Simulations of the MJO using Model E2

a. Simulations of the MJO in AR4 and AR5 versions
of Model E2

Following Wheeler and Kiladis (1999), wavenumber–
frequency diagrams are constructed to determine the
capability of the models to simulate convectively cou-
pled equatorial waves and the MJO. Figure 3 shows the
symmetric wavenumber–frequency power spectra [nor-
malized by estimated background power, Wheeler and
Kiladis (1999)] of equatorial precipitation from obser-
vations and several versions of Model E2. Our focus is
on the signals distinct from the background spectrum in

the Kelvin, equatorial Rossby wave, and MJO bands
(the last being defined as wavenumbers 1–3, periods 30–
60 days) that can be found in the observations (Fig. 3a).
The most significant improvement that AR5a has com-
pared to AR4a is its simulation of the Kelvin mode. The
Kelvin mode in AR5a is similar to that in observations in
both its amplitude and phase speed; the implied equiv-
alent depth is about 25 m. Compared to AR5a, AR4a
has a much weaker and faster Kelvin mode, which is also
mostly confined to high frequencies (i.e., periods less
than 7 days). Despite these improvements, AR5a still
lacks the MJO mode.

Figure 3 also contains the symmetric components of
the wavenumber–frequency spectra of equatorial pre-
cipitation from the different versions of Model E2. The
C_AR5a (Fig. 3d) represents a version of Model E2 that
uses higher horizontal resolution than that in AR5a by

FIG. 3. Space–time spectrum of the 158N–158S symmetric component of precipitation divided by the background spectrum for
(a) GPCP, (b) AR4a, (c) AR5a, (d) C_AR5a, (e) AR5c, (f) AR5a_Ent1, (g) AR5a_Ent1_Re, and (h) AR5a_Ent2_Re. Superimposed are
the dispersion curves of the odd-numbered meridional mode equatorial waves for the equivalent depths of 12, 25, and 50 m.
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CMIP6: GISS-E2.1-R



Low cloud increases in marine stratus regions 

CALIPSO ObservationsGISS-E2.1 (AMIP L40)

GISS-E3 (lat/lon L104) GISS-E3 (Cubed sphere L104)



The process-based diagnostic 
challenge

Imagine.... 
 Reanalysis: find mid-latitude storms 
 Satellites: Create composite  
 Models: Create composite 
 Models: Create pseudo-satellite views 
 Compare processes... 
Estimated completion time using current 
technology?  
 Years. 
Need multivariate/parallel time-space-
model-ensemble member filter combined 
with multi-variate compositing/analysis

Bauer and Del Genio, 2006



Third Challenge
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Climate model tuning:

How do we calibrate the overall 
model?



E is “model goodness” metric;
F is the model field;
R is the reference/truth;
W is the weighting term.

Incorporate obs. bias into ‘W’ 

(i.e. key component of our 
work: develop a regime- or 
region-aware weighting; 
penalize model less where 
observational biases are larger) 

 

No Observational 
Bias

With Observational 
Bias

Use smart sampler to adjust 
parameters and find local maxima in 
goodness…

GCM Parameterization Tuning: incorporating 
knowledge of observational uncertainty 

Elsaesser et al (in prep)
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“If we had observations of the 
future, we obviously would trust 
them more than models, but 
unfortunately…

 … observations of the future are 
not available at this time.” 

                           Tom Knutson and Robert Tuleya



Fourth Challenge
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How do we evaluate predictive 
skill?



Hindsight is 20:20

understanding
prediction
connections
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Natural drivers are inadequate
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Trends are due to human impacts

NASA GISS



Fifth Challenge
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How do we deal with the multi-
model ensemble?



Goddard Institute for
Space Studies

Structural Uncertainty across models 
leads to a range of predictions
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A subset of 5 models 
selected based on 
agreement with recent 
observed average sea ice 
thickness and trends of 
sea ice extent

(five-model average using a 
single realization from each 
model, and model 
minimum-maximum 
uncertainty ranges)

IPCC AR5 
Fig. SPM.7



Goddard Institute for
Space Studies

Model skill is improving

Reichler and Kim (2008)

“Better” “Worse”

“Best” is almost always the multi-model mean! 



Relationship between different 
measures of present-day model skill 

Santer et al, 2012



Goddard Institute for
Space Studies
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Need correlations of skill scores with future 
projections...

i.e. does a good simulation/fit to a prior event give any 
information about future events?

skill

This needs to be demonstrated, not just assumed!

skill
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“… from what has actually been, we 
have data for concluding with regard 
to that which is to happen thereafter.”
                               James Hutton (1788)
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Land-Ocean contrasts are robust in past and future

Masa Kageyama (Schmidt et al, 2014)

Future 
warming

simulations

Past ice age 
simulations Reconstructions
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A lake burst 8000 years 
ago...

...changed ocean 
circulation and left traces in 
Greenland ice...

This hypothesis holds that a massive outflow of fresh water
ran out the Hudson Strait, to the North Atlantic, causing a
slowdown of the meridional overturning circulation, which
enabled wintertime sea ice cover to expand with conse-
quent hemispheric cooling and drying especially surround-
ing the North Atlantic area (Alley and Agustsdottir, 2005;
Ellison et al., 2006). An alternative hypothesis is that a
millennial-scale cooling trend started a few centuries earlier
than the 8.2 ka event (Rohling and Palike, 2005). A minor
solar minimum coinciding with the 8.2 ka event (Muscheler
et al., 2004) as a third hypothesis, may have forced the
system to cross a threshold and may have triggered the
8.2 ka event (Bond et al., 1997, 2001).

In this study, we address the detailed timing and
evolution of the 8.2k event by measuring nitrogen isotope
ratios and methane concentration in trapped air in the
GISP2 ice core. Atmospheric methane concentration can
be viewed as a qualitative indicator of integrated terrestrial
hydrological conditions in methane-producing regions,
owing to the dominant methane source from wetland areas
(!75% of natural emissions, Houweling et al., 2000).
Nitrogen isotopes in trapped air in an ice core provide a
signal of local temperature changes in Greenland
(Severinghaus et al., 1998; Goujon et al., 2003; Landais
et al., 2004). This method (Severinghaus et al., 1998;
Severinghaus and Brook, 1999) provides an opportunity to

precisely and directly assess the timing of abrupt climate
change in Greenland with respect to changes in atmo-
spheric methane, by comparing two gases in the same core.
We also provide an improved estimate of the magnitude of
the temperature change in central Greenland.

2. Materials and methods

We used the GISP2 ice core for our analyses. The
resolution of nitrogen isotope data is 1m (!10 year) from
1359.95 to 1458.95m depth, corresponding to a gas age
range of 7600–8600BP (see below for the basis for this
chronology). Replicate analyses (2–3 for each depth) were
conducted for the entire record. Additional replicates were
done in the intervals 1412.95–1416.95m (6 replicates per
depth) and 1417.97–1423.95m (4 replicates per depth) to
increase the confidence level of the temperature estimate
for the 8.2 ka event. The total number of sampling depths is
96, and the total number of samples is 238. Ice samples
were analyzed for nitrogen isotope ratios following the
method described in Severinghaus et al. (2003) with some
modifications described here. We (Kobashi et al., sub-
mitted for publication) developed a new method (‘‘copper
method’’) for the simultaneous analysis of nitrogen and
argon isotopes in air proportions, with oxygen removed
from the air sample by exposure to hot copper. We used a
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Fig. 1. Greenland ice core records covering the past 16,000 years (oxygen isotopes of ice and methane). Note that the 8.2 ka event punctuates the relatively
warm and stable past !11,000 years since the end of the last glaciation. (Top) GISP2 oxygen isotope record (Stuiver et al., 1995) with a 50-year moving
average. The oxygen isotope record can be considered as a qualitative temperature record on this time scale. (Bottom) Methane concentration in ice cores.
Owing to the different resolution and precision of methane records in GISP2 and GRIP, we used records from 175 to 7530BP and 8762 to 9891BP from
GRIP (Blunier et al., 1995), and records from 7612 to 8617BP (this study) and 10,153 to 16,507BP from GISP2 (Brook et al., 2000).

T. Kobashi et al. / Quaternary Science Reviews 26 (2007) 1212–1222 1213

... providing an out-of-
sample test for the same 
models that predict ocean, 
dust and CH4 changes in 
the future.  



How are old model predictions 
doing?
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If we had observations of the future, we obviously would trust them more than models, but 
unfortunately…

 … observations of the future are not available at this time. 

understanding
prediction
connections
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Sweet et al (2018)



Miami, 2015 Joe Raedle/Getty

High Tide Flooding (CONUS)



Sixth Challenge
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How do we communicate 
effectively what we’ve 

found?
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Current global scale policies 
are not consistent with a stable 

climate

But future balance between 
mitigation, adaptation and 

suffering is still TBD…

Sept 22 2018, NC        Jeff Garrett



“What’s the use of having 
developed a science well enough to 
make predictions if, in the end, all 
we’re willing to do is stand around 
and wait for them to come true?”

                                                                       
                                                        Sherwood Rowland


