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Greetings from KAUST’s new President

Tony Chan, formerly:

President, HKUST

Director, Div Math & Phys Sci,
NSF

Dean, Phys Sci, UCLA
Chair, Math, UCLA
Co-founder, IPAM
Member, NAE

Fellow, SIAM, IEEE, AAAS

ISI highly cited, imaging
sciences, numerical analysis
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Convergence potential

e The convergence of theory and experiment in
the pre-computational era launched modern
science

e The convergence of simulation and big data in
the exascale computational era will give
humanity predictive tools to overcome our
great natural and technological challenges



Convergence of 3'Y and 4t" paradigms

Big Data and
Extreme Computing:
Pathways to

Convergence (2017)
———ee—

downloadable
at exascale.org
BIG DATA AND -

successor to the 2011
EXTRCEP)"&E’SUCTA"IG(E; International Exascale

Software Roadmap
Int J High Performance Computing Applications 34:435-479 (2018)




A vision for BDEC 2

o Edge datais too large
to collect and
transmit

e Need lightweight
learning at the edge:
sorting, searching,
learning about the
distribution

BIG DATA AND o Edge data is pulled
EXTREME-SCALE into the cloud to learn

COMPUTlNG2 e Inference modelis

sent back to the edge




Roles for Artificial Intelligence

e Machine learning in the application

- for enhanced scientific discovery

e Machine learning in the computational
infrastructure

- for improved performance

e Machine learning at the edge

- for managing data volume



A tale of two communities...

e HPC: high performance computing
— grew up around Moore’s Law multiplied by massive parallelism
— predictive on par with experiments (e.g., Nobel prizes in chemistry)

— recognized for policy support (e.g., nuclear weapons, climate
treaties)

— recognized for decision support (e.g., oil drilling, therapy planning)

e HDA: high-end data analytics

— grew up around open source tools (e.g., Hadoop) from online
search and service providers

— created trillion-dollar market in analyzing human preferences

— now dictating the design of network and computer architecture
— now transforming university curricula and national investments
— now migrating to scientific data, evolving as it goes



Pressure on HPC

e Vendors, even those responding to the lucrative call
for exascale systems by government, must leverage

their technology developments for the much larger
data science markets

e This includes exploitation of lower precision floating
point pervasive in deep learning applications

e Fortunately, the concerns are the same:
— energy efficiency
— limited memory per core

— limited memory bandwidth per core



Pressure on HDA

Since the beginning of the big data age, data has been
moved over “stateless” networks

— routing is based on address bits in the data packets

— no system-wide coordination of data sets or buffering
Workarounds coped with volume but are now creaking
— ftp mirror sites, web-caching (e.g., Akamai out of MIT)
Solutions for buffering massive data sets from the HPC
“edge” ...

— seismic arrays, satellite networks, telescopes, scanning
electron microscopes, beamlines, sensors, drones, etc.

...Will be useful for the “fog” environments of the big
data “cloud”



Some BDEC report findings

Many motivations to bring together large-scale
simulation and big data analytics (“convergence”)

Should be combined in situ

— pipelining between simulation and analytics through disk
files with sequential applications leaves too many benefits
“on the table”

Many hurdles to convergence of HPC and HDA
— but ultimately, this will not be a “forced marriage”

Science and engineering may be minority users of
“big data” (today and perhaps forever) but can
become leaders in the “big data” community

— by harnessing high performance computing

— being pathfinders for other applications, once again!



Traditional combination of 3"9/4t paradigms:
from forward to inverse problem

forward problem inverse problem

model model

+ regularization



Traditional combination of 3"9/4th paradigms:
data assimilation

Theory

Hybrid Adjoint-
Ensemble Filters

Fully Nonlinear Dual Filters
Filters Coupled Models

Ocean Circulation Storm Surge Prediction  Reservoir Exploitation Contaminant Transport

c/o |. Hoteit, KAUST



My definition of data assimilation

“When two ugly parents have a
beautiful child” A beautiful book

Data Assimilation

Methods, Algorithms,
and Applications

- ¢.—

Mark Asch S >4 )/ von

Marc Bocquet i \n}f‘ £ R RYAN
Maélle Nodet B

= !Q‘&T‘..t Vo -
for / = °'~---\‘m=dwhw~\x3-&

Jr_l"l/
X =G — 7
= SEL %%W
15 end for hy ol
i6: for/=0p.... . ‘\:F t“ ‘%

;'\l’: ; \ ;‘ & 4
Phoﬁcgdit: Publicis F



Coming interactions between paradigms
opportunities of in situ convergence

- To Simulation | To Analytics
o)

Simulation

3T provides — ?’C ?\69
. we BV
4th Analytics X
@ provides ,\‘ &( O«\ —
120\
Learning

4th provides —
(b)



Coming interactions between paradigms
opportunities of in situ convergence

- To Simulation | To Analytics

q Simulation
I .
3 provides —
th  Analytics Steering in high
4 provides dimensional
(a) parameter space;
In situ processing
Learning Smart data
4th provides compression;

(b)

Replacement of
models with learned
functions



Coming interactions between paradigms
opportunities of in situ convergence

- To Simulation | To Analytics

Simulation Data for

Physics-based training,
“regularization” augmenting
real-world data

3t provides —

th Analytics Steering in high
4 provides dimensional L
(a) parameter space;

In situ processing

Learning Smart data

4th provides compression;
Replacement of

(b) models with learned
: functions



Coming interactions between paradigms
opportunities of in situ convergence

Simulation Data for
3 rd provides Physics-based training,

“regularization” augmenting
real-world data

th Analytics Steering in high
4 provides dimensional Feature vectors
(a) parameter space; for training
In situ processing

Learning Smart data .

4th . compression; Imputation of

provides ’ missing data;

b Replacement of Detection an(,i
( ) models with learned

. classification
functions



Convergence for performance

® |tis not only the HPC application that
benefits from convergence

® Performance tuning of the HPC hardware-
software environment also will benefit

- iterative linear solvers, alone, have a dozen or more
problem- and architecture-dependent tuning
parameters that cannot be set automatically, but
can be learned

- nonlinear solvers have additional parameters

- emerging architectures have a complex memory
hierarchy of many modes for which optimal data
placement can be learned



To good to be practical?

/

I the convergence of theory and
experiment in the pre-computational era
launched modern science

And If
the convergence of simulation and big
data in the exascale computational era
has potential for similar impact
Then

What are the challenges?




Software of the 3" and 4t" paradigms

Figure 1. Data analytics and computing ecosystem compared.

1
Application Level Mahout, R, and Applications : Applications and Community Codes
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c/o Reed & Dongarra, Comm. ACM, July 2015



Divergent features
o Software stacks

e Computing facilities

— execution and storage policies
e Research communities

— conferences, and journals
e University curricula

— next generation workforce

e Some hardware forcings

— natural precisions, specialty instructions




...divergent not only in software stacks

® Data ownership
HPC: generally private HDA: often curated by community

® Data access
HPC: bulk access, fixed HDA: fine-grained access, elastic

® Data storage
HPC: local, temporary  HDA: cloud-based, persistent




...divergent not only in software stacks

® Scheduling policies
HPC: batch HDA: interactive

HPC: exclusive space HDA: shared space

® Community premiums
HPC: capability, reliability HDA: capacity, resilience

® Hardware infrastructure
HPC: “fork-lift upgrades” HDA: incremental upgrades




Early BDEC workshop slide:
many other divergent aspects

Comparing Architecture S g bertions

Big Data - Extreme Computing Big Data : Extreme Computing

2 Cost in memory and Significant Cost in memory and Continuous access to long-lived  Periodic access to compute

interconnect bandwidth interconnect bandwidth “services” created by science resources via job submitted to

Little Cost for resilient hardware  Significant Cost in resilient community scheduler and queue

in data storage hardware in shared file system

Little Cost for hardware to Significant Cost in resilience Time-shared access to elastic Space-shqred compute .rest?urces
. support system-wide resilience  hardware to reduce whole- resources for exclusive access during jobs

SRR New hardware capacity New tightly integrated system
Significant Cost: increased Significant Cost: cutting-edge CPU purchased incrementally purchased every 4 years
aggregate I0Ps performance features

Users charged for all resources Users charged for CPU hours,

Often trades performance for en trades capacity for
ft perfol fo Oft pacity fo (storage, cpu, networking) storage and networking is free

capacity performance

left side of Comparing Software Comparing Data right side of

SEC

e a C h C h a rt Software responds to elastic After allocation, resources static Inputs arrive continuously, Inputs arrive infrequently, e a c h c h a rt

resource demands until termination streaming workflows buffering carefully managed
Data access often fine-grained  Data access is large bulk Data is unrepeatable snapshot in Data often reproducible
(aggregated) requests time (repeat simulation)
Services are resilient to fault Applications restart after fault Data generated by sensors Data generated from simulation
(error: from measurement) (error: from simulation)

Often customized programming  Widely standardized
models programming models Data rate limited by sensors Data rate limited by platform

Libraries help move computation Libraries help move data to CPUs
to storage

Users routinely deploy their own Users almost never deploy
services customized services

Data often shared and curated by Data often private
community

Often unstructured Semi-structured

following J. Ahrens, LANL



Extra motivations for convergence

e Vendors wish to unify their offerings
- traditionally 39 paradigm-serving vendors are now
market-dominated by the 4t"
e Under all hardware scenarios, data movement is
much more expensive than computation

- simulation and analytics should be done in situ, with
each other on in-memory (in-cache?) data

- exchange in the form of exchange of files between 3"
and 4t phrases is unwieldy




HPC benefits from visualization
“the oldest form of HDA”

e Results of simulation may be unusable or less
valuable without fast-turnaround viz

e Simulations at scale can be very expensive; don’t
want to waste an unmonitored one that has
gone awry

e Want to be able to steer




Visualization benefits from HPC

e Many visualization demands are real-time or put
a premium on time-to-solution

+ there may be a viz-based human decision based in the
loop

+ high performance may be required, or viz will dominate

o By the time simulations scale, all of their global
data structure kernels must scale

+ e.g., linear solvers, stencil application, graph searches

+ some of the same kernels are required in visualization




Multiple classes of “big data”

e In scientific big data, different solutions may be
natural for three different categories:

— data arriving from edge devices (often in real time, e.g.,
beamlines) that is never centralized but processed on
the fly

— federated multi-source data (e.g., bioinformatics)
intended for “permanent” archive

— combinations of data retrieved from archival source
and dynamic data from a simulation (e.g., assimilation
in climate/weather)

o “Pathways” report addresses these challenges in
customized sections



Al classification (unconventional)

_ top-down, — Linear
deductive, ,
Artificial laws/rules: Zr id’Ct » :
ruricial | gimulation ata points: . .
Intelligence Regression L Nonlinear, — Bayesian
Max likelihood
__ bottom-up, A — Supervised
Inductive, labeled data: 4 Decision tree
history/ : Classification
_ predict .
examples: L tegories:
Analytics categores. — Neural networks
& Learning Classification & Deep leaning
& Clustering L unsupervised
unlabeled data:
Clustering — K-means

after Eng Lim Goh (Chief Technologist, HPE)



Simulation and analytics: a cute pair

Both simulation and analytics include both
models and data

— simulation uses a model (mathematical)

to produce data _
analytics/
— analytics uses data to produce a model learning
(statistical)

Models generated by analytics can be used models data

in simulation @

— not the only source of models, of course

Data generated by simulation can be used in
analytics

— not the only source of data, of course
A virtuous cycle can be set up



Simulation and learning: difference

inputs

> Primary novelty in machine-
based “intelligence” is the
learning part
simulation

> A simulation system is historically —
a fixed, human-engineered code
that does not improve with the
flow of data through it

3

predictions



Simulation and learning: difference

> Primary novelty in machine-based
“intelligence” is the learning part

inputs

4

> Machine learning systems improve

as they ingest data
] o neural
— make inferences and decisions network

on their own )
coeffs ‘

— actually generate the model training ~®
> Of course, as with a child, when data
provided with information, a 3

machine may learn incorrect rules
and make incorrect decisions

predictions



An in situ converged system

inﬁjts
> Including learning in the
simulation loop can enhance the @
predictivity of the simulation
models data

> Including both simulation data and
observational data in the learning
loop can enhance the learning

¥

predictions

> Ultimately a win-win marriage



“Scientific method on steroids”

<

TX|inspires.

The International Conference for High Performance
Computing, Networking, Storage, and Analysis

The “steroids” are high performance computing technologies

® Big data paper won Gordon Bell Prize for first time
® Half of the Gordon Bell finalists in big data



A new instrument is emerging!

“Nothing tends so much to the
advancement of knowledge as the
application of a new instrument.

The native intellectual powers of
people in different times are not
so much the causes of the
different success of their labors,
as the peculiar nature of the
means and artificial resources in

their possession.”
— Humphrey Davy (1778-1829)

Inventor of electrochemistry (1802)
Discoverer of K, Na, Mg, Ca, Sr, Ba, B, Cl (1807-1810)



Davy’s 1807-1010 “sprint” through

: the periodic table
H
5 6 7 8 9
B C|IN]|O F
14 15 1 17
Si|P|S Cl
[ 28] 28] 27 28] 28] 30 33
Cr |IMn|Fe | Co|Ni | Cul|Zn As | Se| Br
3] 44| 45| 48| 47| 48 52| 53
Ru|Rh |Pd [Ag |Cd Te | |
76 771 78 79 80 85
Os| Ir | Pt | Au| Hg At
108 109 110
Uno|Une|Unn
58] 50
Ce | Pr
g0 o1
Th | Pa

+ Berkeley cyclotron elements



Bonus convergence benefit:
Rethinking HPC in HDA datatypes

Seismic Modeling and Inversion Using
Half Precision

Outline

Introduction

Scaling the wave equation
Results: Speed-up and accuracy
Impact on FWI

Conclusion

DN o=

By:

Gabriel Fabien-Ouellet, Stanford

Fully acceptable accuracy in seismic imaging from
single to half precision!

GTC 2018 Santa Clara

Acceleration

1.5

0.5

0.0

'FP16 over FP32

K40 M40 P100 V100
Model

NVIDIA.



Bonus convergence benefit:
Rethinking HPC in HDA datatypes

3 —
DEEP LEARNING HARDWARE ACCELERATES FUSED [P
DISCONTINUOUS GALERKIN SEISMIC SIMULATIONS g ol [
Alexander Heinecke, Intel : : H.i H I EHHHH QHHHH
FU"V accePtabIe accuracy in 2 3I(:m:in:Ieprec;o: « 2 3k:mdsouilepre:snoi o

seismic forward modeling from
double to single precision!

IXPUG 2018 Saudi Arabia



Bonus convergence benefit:
Data center economy

Reduce the time burden of 1/O

® Non-global data|/O ™ Non-global Metadata * Global data I/O

® Global Metadata ® Not 1/0
100%

80%

-y
=)
S

Runtime (%)
P
o
X

g

0%

1 17,649

Earthl's Jobs
Figure 4: Breakdown of total run time for each Earthl job.

c/o W. Gropp, UIUC

platform == Edison == Intrepid == Mira
[

1TB/s+ |
2.1 GB/s4— !
Y o=t
o
-
.81 MB/ _\

S

—
o

1 KB/s+

0 25% 50% 75% 100%

Applications

Figure 6: Maximum I/O throughput of each app across all its
jobs on a platform, and platform peak I/0O throughput.



200 R

Bonus convergence benefit:
Data center economy

Reduce the space burden of 1/0

Uncompressed .

I 0.8
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600 |

& ! 8 | | 06
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c/o F. Cappello, Argonne
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Summary observations: convergence

“Convergence” began as an architectural
imperative due to market size, but flourishes as a
stimulus to both simulation science and data
science

However, the two distinct ecosystems require
blending

In standalone modes, architectures, operations,
software, and data characteristics often strongly
contrast

Must be overcome since standalone mode may not
be competitive



Giving convergence the “edge”

e Currently, data from “edge” devices is sent to_th
cloud to learn from

annually about
6 global humas
DNA’s worth o

e Need lightweight machine lea
downsize the data

CERN (ATLAS pictured) SKA (dishes pictured)
25 GB/s, 780 PB/yr 1 TB/s, 31 EB/yr, red to 3 EB/yr



Extending BDEC to the edge

« Mar 2018
Chicago
. L  Nov 2018
R B Indianapolis
bU:LZ « Feb 2019
Kobe

BIG DATA AND
EXTREME-SCALE ° May 2019
COMPUTING2 Poznan



The batonpass




2011 Roadmap report

INTERNATIONAL

EXASCALE ROADMAPlO The International Exascale

SOF TWARE PROJECT
Software Roadmap

J. Dongarra, et al.,
International Journal of High
Performance Computer
Applications 25:3-60, 2011

Jack Dongarra, Pete Beckman, Terry Moore, Patrick Aerts, Giovanni Aloisio, Jean-Claude
Andre, David Barkai, Jean-Yves Berthou, Taisuke Boku, Bertrand Braunschweig, Franck
Cappello, Barbara Chapman, Xuebin Chi, Alok Choudhary, Sudip Dosanjh, Thom Dunning,
Sandro Fiore, Al Geist, Bill Gropp, Robert Harrison, Mark Hereld, Michael Heroux, Adolfy
Hoisie, Koh Hotta, Yutaka Ishikawa, Zhong Jin, Fred Johnson, Sanjay Kale, Richard Kenway,
David Keyes, Bill Kramer, Jesus Labarta, Alain Lichnewsky, Thomas Lippert, Bob Lucas, Barney
Maccabe, Satoshi Matsuoka, Paul Messina, Peter Michielse, Bernd Mohr, Matthias Mueller,
Wolfgang Nagel, Hiroshi Nakashima, Michael E. Papka, Dan Reed, Mitsuhisa Sato, Ed Seidel,
John Shalf, David Skinner, Marc Snir, Thomas Sterling, Rick Stevens, Fred Streitz, Bob Sugar,
Shinji Sumimoto, William Tang, John Taylor, Rajeev Thakur, Anne Trefethen, Mateo Valero,
Aad van der Steen, Jeffrey Vetter, Peg Williams, Robert Wisniewski, and Kathy Yelick



Exascale

architectural drivers

Clock rates cease to increase while arithmetic
capability continues to increase dramatically with
concurrency consistent with Moore’s Law

Memory storage capacity fails to keep up with

arithmetic capa

Transmission ca

oility

oability (memory bandwidth,

network bandwidth) fails to keep up with
arithmetic capability

=» Billions of € £ S ¥ of scientific applications
worldwide hang in the balance until algorithms better
span the growing architecture-applications gap



Two decades of evolution
1997 2017

ASCI Red at Sandia Cavium ThunderX?2
1.3 TF/s, 850 KW ~1.1TF/s, ~ 0.2 KW

3.5 orders of
magnitude




Top 10 architecture trends, 2010-2018

100 _ —=— Node compute power (FLOP/s)
- —e— Node bandwidth (Gbit/s)
Byte-per-flop ratio
27
o
NS0}
2% i
= O
(_U ‘5_ P e
—
C
S o1¢
35
S >
R Averages in 2010:
B Node power: 31 [GF/s]
01k B Node BW: 2.7 [GB/s]
. [0 Byte-per-FLOP: 0.09 [B/F]
1 | | | | L
Q N QU & ™ &) © A ©
> ) ) S S S S ) )
v v v v v v v v v

c/o Keren Bergman (Columbia, ISC’18)



Top 10 architecture trends, 2010-2018

Evolution relative to 2010

100 _ —=— Node compute power (FLOP/s) -
- —e— Node bandwidth (Gbit/s)
Byte-per-flop ratio
w
5
210 !
>
(7)) -
o
e o e ©
) © - Averages in 2018:
O 4 A B Node power: 2026 [GF/s]
S Y B Node BW: 14.3 [GB/s]
E) [0 Byte-per-FLOP: 0.001 [B/F]
L Averages in 2010:
B Node power: 31 [GF/s]
01k B Node BW: 2.7 [GB/s]
E O Byte-per-FLOP: 0.09 [B/F] x0.08
i 1 1 | ] | | |
Q N v & ™ © A )
N N N N N N N N
S I

Sunway TaihulLight (Nov 2017) B/F = 0.004;
Summit HPC (June 2018) B/F = 0.0005

c/o Keren Bergman (Columbia, ISC’18)

8x deterioration
in 2018



It’s not just bandwidth; it’s energy

e Access SRAM (registers, cache) ~ 10 fl/bit

e Access DRAM on chip ~ 1 pl/bit
e Access HBM (few mm) ~ 10 pJ/bit
e Access DDR3 (few cm) ~ 100 pJ/bit

~ 10% advantage in energy for staying in cache!

similar ratios for latency as for bandwidth and
energy



Algorithmic philosophy

Algorithms must span a widening gulf ...

adaptive
algorithms

L austere
architectures

ambitious Q. <
applications

A full employment program
for algorithm developers ©




= Billions of

SEfY

of scientific software worldwide hangs in the
balance until our algorithmic infrastructure
evolves to span the architecture-applications

gap



Required software

Model-related Development-related Production-related

- Geometric modelers - Configuration systems - Visualization systems
- Meshers - Source-to-source - Dynamic resource
- Discretizers translators management
d_ . ) - Compilers - Dynamic performance
Solvers / integrato .
— - Simulators optimization
- Adaptivity systems .
~ Random no. generators- Messaging systems - Authenticators
_ Subgridscale physics - Debuggers - 1/O systems
- Uncertainty - Profilers - Workflow controllers
quantlf.lcatlon | . Erameworks
- Dynamic load balancing High-end computers come :
e . , - Data miners
- Graphs and with little of this. Most is o
combinatorial algs. contributed by the user - Fault monitoring,
_ Compression community. reporting, and

recovery



Embracing the opportunities of exascale

P2M L2P
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Architectural imperatives for algorithms

Reduce synchrony

- in frequency or span or both
- cannot afford to synchronize a billion imbalanced cores

Reside “high” on the memory hierarchy
- as close as possible to the processing elements
- latency to DRAM may be a thousand cycles

- moving data is orders of magnitude more costly in energy
than computing

Increase SIMT/SIMD-style shared-memory
concurrency

- one instruction can trigger 8 (AVX 512) to 64 (tensor core)
operations



Exascale algorithmic strategies

Employ dynamic runtime systems

based on directed acyclic task graphs

(DAGS)

- e.g., ADLB, Argo, Charm++, HPX, Legion,
OmpSs, Quark, STAPL, StarPU, OpenMP

Exploit hierarchical low-rank data

sparsity

- meet “curse of dimensionality” with
“blessing of low rank”

Code to the architecture, but present

an abstract API

- “hourglass model” of IP/TCP for y N
processors —

applications



1) Taskification based on DAGs

 Advantages

— remove artifactual synchronizations in the
form of subroutine boundaries

— remove artifactual orderings in the form of
pre-scheduled loops

— expose more concurrency
* Disadvantages
— pay overhead of managing task graph
— potentially lose some memory locality



2) Hierarchically low-rank operators

 Advantages

— shrink memory footprints to live higher on
the memory hierarchy

* higher means quick access (1 arithmetic
intensity)

— reduce operation counts
— tune work to accuracy requirements
* e.g., preconditioner versus solver
* Disadvantages
— pay cost of compression
— not all operators compress well



3) Code to the architecture

 Advantages

— tiling and recursive subdivision create large
numbers of small problems that can be
marshaled for batched operations on GPUs
and MICs

 amortize call overheads
« polyalgorithmic approach based on block size

— non-temporal stores, coalesced memory
accesses, double-buffering, etc. reduce
sensitivity to memory

 Disadvantages

— code is more complex
— code is architecture-specific at the bottom



1) Reduce over-ordering and synchronization
through DAGs, ex.: generalized eigensolver

Ax = ABx

Operation Explanation LAPACK routine name

©@ B=LxLT" Cholesky factorization POTRF

©@ C=L"1xAx LT application of triangular factors SYGST

or HEGST

© T=QT xCxQ tridiagonal reduction SYEVD or HEEVD

QO Tx= X QR iteration STERF
o D
o D
© o
= D
© ©
S ©
© @
© ©
o D
D D




Loop nests and subroutine calls, with their
over-orderings, can be replaced with DAGs

Diagram shows a
dataflow ordering of the
steps of a 4 X 4 symmetric
generalized eigensolver

e e e
o e were
e e swe | we

=

Ny,

Nodes are tasks, color-

coded by type, and edges
are data dependencies

Time is vertically
downward

Wide is good; short is
good

CRCRCRCNCNCNCRCRCRCRCRCNCNCRONCRCRCNCRCRORONONG



2) Reduce memory footprint and
operation complexity with low rank

* Replace dense blocks with hierarchical
representations when they arise during
matrix operations

— use high accuracy (high rank, but typically less
than full) to build “exact” solvers

— use low accuracy (low rank) to build
preconditioners
°* Tune block structure and rank parameters to
variety of hardware configurations



Key tool: hierarchical matrices

 [Hackbusch, 1999] : off-diagonal blocks of typical
differential and integral operators have low effective rank

* By exploiting low rank, kK, memory requirements and
operation counts approach optimal in matrix dimension n:

— polynomial in k
— lin-log in n
— constants carry the day
* Such hierarchical representations navigate a compromise
— fewer blocks of larger rank (“weak admissibility”) or
— more blocks of smaller rank (“strong admissibility”)



Recursive construction of an H-matrix

|
o
g
B
Step O Step 1 Step 2 Step 3 Step 4
_
Specify two parameters: < | Until each block is
® Block size acceptably T | acceptably small:
small to handle | | | = ® |s rank acceptably
densely | , A small?
® Rank acceptably — g | | ® If not, subdivide
small to represent P ﬂ\% ~ block
block i Take union of leaf blocks




3) “Hourglass” model for algorithms
(borrowed from internet protocols)

algorithmic
infrastructure




Software implementing these strategies

AHIGH PEFORMANCE MULTI-OBJECT ADAPTIVE OPTICS FRAMEWORK
FOR GROUND-BASED ASTRONOM

8, L2 | Extreme Computing

The MultiObject Adaptive Optics (MOAO] framework providos a comprehonsive tostbed for high performance
computational astronomy. In particular, the European Extremely Large Telescope (EELT) s one of today's most challenging
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" " BOWNLOAD THE SOFTWARE AT htp//gthub com/ecrc/moao

PARALLEL HIGH PERFORMANCE UNIFIED FRAMEWORK FOR GEOSTATISTICS ON.MANY-CORE SYSTEMS,

ExaGeoStat -«
Research Center

The Bxascale GeoStatistics project (EaGeoStat) s a paralll high performance unified framework for_ computational
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Performance Results (MLE)

DOWNLOAD THE LIBRARY AT hitp//gthub.com/ecrc/exageostat

oans ™ Wiin_iculoor

AHIGH PERFORMANCE STENCIL FRAMEWORK USING
WAFEFRONT DIAMOND TILING

Extreme Computing
Research Center

The Ginih framework implements a generalzed multidimensional intra-tile parallelization scheme for shared-cache
koo procseors Gha rowie n @ sfcan etucion of cache e reremonts fo cemporehy bocked serch
codes. It ensur and wide range

ocally cached data reuse. The Girih ibrary reduces cache and memory bandwidth pressure, which makes it amenable to

STENCIL COMPUTATIONS MULT-DIMENSIONAL INTRA-TILE PARALLELIZATION
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putatic

STARS-H - .-
Research Center

STARSH s o high performance parallel open-source package of Software for Testing Accuracy, Reliabilty and Scalabilty
o It provides a
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RECURSIVE ALGORITHMS: TRMM and TRSM KBLAS 2.0
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“A good player plays where the puck is, while a great
player skates to whdgthe puck is going to be.”

...\
!

— Wayne Gretzsky




The second baton pass




Ill

Architectural “trickles”

e HPC hardware architecture has “trickle down”
benefits

— “Petascale in the machine room means terascale
on the node.” [Petaflops Working Group, 1990s]

— Extrapolating: exascale on the machine room floor
means petascale under the desk.

e HDA software architecture has “trickle back”
benefits
— “Google is living a few years in the future and

sends the rest of us messages.” [Doug Cutting,
Hadoop founder]



Motivations for convergence

e Scientific and engineering advances

— tune physical parameters in simulations for
predictive performance

— tune algorithmic parameters of simulations for
execution performance

— filter out nonphysical candidates in learning
— provide data for learning
e Economy of data center operations
— obviate 1/0
— obviate computation!
e Development of a competitive workforce

— leaders in adopting disruptive tools have
advantages in capability and in recruiting



References to the
community reports

« exascale.org/bdec

— http://www.exascale.org/bdec/sites/www.exascale.org
.bdec/files/whitepapers/bdec2017pathways.pdf

— "Big Data and Extreme-scale Computing: Pathways to
Convergence,” M. Asch, et al., Int. J. High Perf.
Comput. Applics. 32:435-479, 2018

« exascale.orgl/iesp
— http://www.exascale.org/mediawiki/images/2/20/IESP-

roadmap.pdf

— “The International Exascale Software Roadmap,” J.
Dongarra, et al., Int. J. High Perf. Comput. Applics.
25:3-60, 2011



http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec2017pathways.pdf
http://www.exascale.org/mediawiki/images/2/20/IESP-roadmap.pdf

Concluding prediction

® No need to force a “shotgun” marriage of
“convergence” between 3" and 4t" paradigms

- a love-based marriage is inevitable in the near
future
® Driver will be opportunity for both 3 and 4t
paradigm communities to address their own

traditional concerns in a superior way in
mission-critical needs in scientific discovery and

engineering design
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Thank you!

4

david.keyes@kaust.edu.sa




