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Greetings from KAUST’s new President

Tony Chan, formerly:
n President, HKUST
n Director, Div Math & Phys Sci, 

NSF
n Dean, Phys Sci, UCLA
n Chair, Math, UCLA
n Co-founder, IPAM
n Member, NAE
n Fellow, SIAM, IEEE, AAAS
n ISI highly cited, imaging 

sciences, numerical analysis
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Convergence potential

n The convergence of theory and experiment in 
the pre-computational era launched modern 
science

n The convergence of simulation and big data in 
the exascale computational era will give 
humanity predictive tools to overcome our 
great natural and technological challenges



Convergence of 3rd and 4th paradigms
Big Data and 
Extreme Computing: 
Pathways to 
Convergence (2017)

downloadable 
at exascale.org
successor to the 2011 
International Exascale 
Software Roadmap

Int J High Performance Computing Applications 34:435-479 (2018)



A vision for BDEC 2
n Edge data is too large 

to collect and 
transmit

n Need lightweight 
learning at the edge: 
sorting, searching, 
learning about the 
distribution

n Edge data is pulled 
into the cloud to learn 

n Inference model is 
sent back to the edge



Roles for Artificial Intelligence

n Machine learning in the application
- for enhanced scientific discovery

n Machine learning in the computational 
infrastructure
- for improved performance

n Machine learning at the edge
- for managing data volume



A tale of two communities…
• HPC: high performance computing

– grew up around Moore’s Law multiplied by massive parallelism
– predictive on par with experiments (e.g., Nobel prizes in chemistry)
– recognized for policy support (e.g., nuclear weapons, climate 

treaties)
– recognized for decision support (e.g., oil drilling, therapy planning)

• HDA: high-end data analytics
– grew up around open source tools (e.g., Hadoop) from online 

search and service providers
– created trillion-dollar market in analyzing human preferences
– now dictating the design of network and computer architecture
– now transforming university curricula and national investments
– now migrating to scientific data, evolving as it goes



Pressure on HPC
• Vendors, even those responding to the lucrative call 

for exascale systems by government, must leverage 
their technology developments for the much larger 
data science markets

• This includes exploitation of lower precision floating 
point pervasive in deep learning applications

• Fortunately, the concerns are the same:
– energy efficiency
– limited memory per core
– limited memory bandwidth per core



Pressure on HDA
• Since the beginning of the big data age, data has been 

moved over “stateless” networks
– routing is based on address bits in the data packets
– no system-wide coordination of data sets or buffering

• Workarounds coped with volume but are now creaking
– ftp mirror sites, web-caching (e.g., Akamai out of MIT)

• Solutions for buffering massive data sets from the HPC 
“edge” …
– seismic arrays, satellite networks, telescopes, scanning 

electron microscopes, beamlines, sensors, drones, etc.

• …will be useful for the “fog” environments of the big 
data “cloud”



Some BDEC report findings
• Many motivations to bring together large-scale 

simulation and big data analytics (“convergence”)
• Should be combined in situ 

– pipelining between simulation and analytics through disk 
files with sequential applications leaves too many benefits 
“on the table”

• Many hurdles to convergence of HPC and HDA
– but ultimately, this will not be a “forced marriage”

• Science and engineering may be minority users of 
“big data” (today and perhaps forever) but can 
become leaders in the “big data” community
– by harnessing high performance computing
– being pathfinders for other applications, once again!



Traditional combination of 3rd/4th paradigms:
from forward to inverse problem

forward problem

solution

model

forcing
BCs

params

IC
s

inverse problem

model

forcing
BCs

‘solution’

params

IC
s

+ regularization



Applications

Bayesian Filtering
Data Assimilation

Ocean Circulation Storm Surge Prediction Reservoir Exploitation Contaminant Transport

Theory

Fully Nonlinear 
Filters

Dual Filters 
Coupled Models

Robust Ensemble 
Filters

Hybrid Adjoint-
Ensemble Filters

c/o I. Hoteit, KAUST

Traditional combination of 3rd/4th paradigms:
data assimilation



My definition of data assimilation
“When two ugly parents have a 

beautiful child”

Photo credit: Publicis

A beautiful book



Coming interactions between paradigms
opportunities of in situ convergence 

To Simulation To Analytics To Learning

Simulation
provides −

Analytics
provides −

Learning
provides −

3rd

4th

(a)

4th

(b)

Table 1 from the BDEC Report



To Simulation To Analytics To Learning

Simulation
provides −

Analytics
provides

Steering in high 
dimensional 

parameter space;
In situ processing

−

Learning
provides

Smart data
compression;

Replacement of 
models with learned 

functions

−

3rd

4th

(a)

4th

(b)

Coming interactions between paradigms
opportunities of in situ convergence 



To Simulation To Analytics To Learning

Simulation
provides − Physics-based 

“regularization”

Data for 
training, 

augmenting 
real-world data

Analytics
provides

Steering in high 
dimensional  

parameter space;
In situ processing

−

Learning
provides

Smart data
compression;

Replacement of 
models with learned 

functions

−

3rd

4th

(a)

4th

(b)

Coming interactions between paradigms
opportunities of in situ convergence 



To Simulation To Analytics To Learning

Simulation
provides − Physics-based 

“regularization”

Data for 
training, 

augmenting 
real-world data

Analytics
provides

Steering in high 
dimensional  

parameter space;
In situ processing

− Feature vectors 
for training

Learning
provides

Smart data
compression;

Replacement of 
models with learned 

functions

Imputation of
missing data;
Detection and 
classification

−

3rd

4th

(a)

4th

(b)

Coming interactions between paradigms
opportunities of in situ convergence 



Convergence for performance 

david.keyes@kaust.edu.sa

n It is not only the HPC application that 
benefits from convergence

n Performance tuning of the HPC hardware-
software environment also will benefit
- iterative linear solvers, alone, have a dozen or more 

problem- and architecture-dependent tuning 
parameters that cannot be set automatically, but 
can be learned

- nonlinear solvers have additional parameters
- emerging architectures have a complex memory 

hierarchy of many modes for which optimal data 
placement can be learned



To good to be practical?

the convergence of theory and 
experiment in the  pre-computational era 
launched modern science 

the convergence of simulation and big 
data in the exascale computational era 
has potential for similar impact

What are the challenges?

If

And If

Then



Software of the 3rd and 4th paradigms

c/o Reed & Dongarra, Comm. ACM, July 2015



Divergent features
n Software stacks
n Computing facilities
- execution and storage policies

n Research communities
- conferences, and journals

n University curricula
- next generation workforce

n Some hardware forcings
- natural precisions, specialty instructions



…divergent not only in software stacks

nData ownership
HPC: generally private HDA: often curated by community

nData access
HPC: bulk access, fixed HDA: fine-grained access, elastic

nData storage
HPC: local, temporary HDA: cloud-based, persistent



nScheduling policies
HPC: batch HDA: interactive
HPC: exclusive space HDA: shared space

nCommunity premiums
HPC: capability, reliability HDA: capacity, resilience

nHardware infrastructure
HPC: “fork-lift upgrades” HDA: incremental upgrades

…divergent not only in software stacks



Early BDEC workshop slide:
many other divergent aspects

left side of 
each chart

right side of 
each chart

following J. Ahrens, LANL



Extra motivations for convergence

n Vendors wish to unify their offerings
- traditionally 3rd paradigm-serving vendors are now 

market-dominated by the 4th

n Under all hardware scenarios, data movement is 
much more expensive than computation 
- simulation and analytics should be done in situ, with 

each other on in-memory (in-cache?) data
- exchange in the form of exchange of files between 3rd

and 4th phrases is unwieldy



HPC benefits from visualization
“the oldest form of HDA”

n Results of simulation may be unusable or less 
valuable without fast-turnaround viz

n Simulations at scale can be very expensive; don’t 
want to waste an unmonitored one that has 
gone awry

n Want to be able to steer



Visualization benefits from HPC

n Many visualization demands are real-time or put 
a premium on time-to-solution 
◆ there may be a viz-based human decision based in the 

loop
◆ high performance may be required, or viz will dominate 

n By the time simulations scale, all of their global 
data structure kernels must scale
◆ e.g., linear solvers, stencil application, graph searches
◆ some of the same kernels are required in visualization



Multiple classes of “big data”
• In scientific big data, different solutions may be 

natural for three different categories:
– data arriving from edge devices (often in real time, e.g., 

beamlines) that is never centralized but processed on 
the fly

– federated multi-source data (e.g., bioinformatics) 
intended for “permanent” archive 

– combinations of data retrieved from archival source 
and dynamic data from a simulation (e.g., assimilation 
in climate/weather)

• “Pathways” report addresses these challenges in 
customized sections



c/o E.-L. Goh, HP

top-down,
deductive,
laws/rules:
SimulationArtificial

Intelligence

bottom-up,
Inductive,
history/ 
examples:
Analytics 
& Learning

predict 
categories:
Classification 
& Clustering

supervised 
labeled data:
Classification

unsupervised 
unlabeled data:
Clustering K-means

predict 
data points:
Regression

Linear

Nonlinear, 
Max likelihood

Bayesian

Decision tree

Neural networks
& Deep leaning

AI  classification (unconventional)

after Eng Lim Goh (Chief Technologist, HPE)



Ø Both simulation and analytics include both 
models and data
– simulation uses a model (mathematical) 

to produce data
– analytics uses data to produce a model 

(statistical)
Ø Models generated by analytics can be used 

in simulation
– not the only source of models, of course

Ø Data generated by simulation can be used in 
analytics
– not the only source of data, of course

Ø A virtuous cycle can be set up

analytics/
learning

simulation

datamodels

c/o A. Raies, KAUST

Simulation and analytics: a cute pair



Ø Primary novelty in machine-
based “intelligence” is the 
learning part

Ø A simulation system is historically 
a fixed, human-engineered code 
that does not improve  with the 
flow of data through it

simulation

c/o A. Raies, KAUST

predictions

network

optimizer

coeffs

inputs

simulation 
system

Simulation and learning: difference



Ø Primary novelty in machine-based 
“intelligence” is the learning part

Ø Machine learning systems improve 
as they ingest data
– make inferences and decisions 

on their own
– actually generate the model

Ø Of course, as with a child, when 
provided with information, a 
machine may learn incorrect rules 
and make incorrect decisions

simulation

c/o A. Raies, KAUST

training
data

predictions

neural 
network

optimizer

coeffs

inputs

Simulation and learning: difference



Ø Including learning in the 
simulation loop can enhance the 
predictivity of the simulation

Ø Including both simulation data and 
observational data in the learning 
loop can enhance the learning

Ø Ultimately a win-win marriage

analytics

simulation

datamodels

inputs

predictions

An in situ converged system



“Scientific method on steroids”

The “steroids” are high performance computing technologies

n Big data paper won Gordon Bell Prize for first time
n Half of the Gordon Bell finalists in big data



A new instrument is emerging!
“Nothing tends so much to the 
advancement of knowledge as the 
application of a new instrument. 
The native intellectual powers of 
people in different times are not 
so much the causes of the 
different success of their labors, 
as the peculiar nature of the 
means and artificial resources in 
their possession.”

— Humphrey Davy (1778-1829) 

Inventor of electrochemistry (1802)
Discoverer of K, Na, Mg, Ca, Sr, Ba, B, Cl (1807-1810)



Davy’s 1807-1010 “sprint” through 
the periodic table

+ Berkeley cyclotron elements



Bonus convergence benefit: 
Rethinking HPC in HDA datatypes

GTC 2018 Santa Clara

Fully acceptable accuracy in seismic imaging from 
single to half precision!

, Stanford



IXPUG 2018 Saudi Arabia

Bonus convergence benefit: 
Rethinking HPC in HDA datatypes

Alexander Heinecke, Intel

Fully acceptable accuracy in 
seismic forward modeling from 

double to single precision!



Reduce the time burden of I/O

c/o W. Gropp, UIUC

Bonus convergence benefit: 
Data center economy



Reduce the space burden of I/O

c/o F. Cappello, Argonne

Bonus convergence benefit: 
Data center economy



Summary observations: convergence
• “Convergence” began as an architectural 

imperative due to market size, but flourishes as a 
stimulus to both simulation science and data 
science

• However, the two distinct ecosystems require 
blending

• In standalone modes, architectures, operations, 
software, and data characteristics often strongly 
contrast

• Must be overcome since standalone mode may not 
be competitive



Giving convergence the “edge”
• Currently, data from “edge” devices is sent to the 

cloud to learn from
• Inference model is set back to the edge
• Need lightweight machine learning at the edge to 

downsize the data

SKA (dishes pictured)
1 TB/s, 31 EB/yr, red to 3 EB/yr

CERN (ATLAS pictured)
25 GB/s, 780 PB/yr

SKA will produce 
annually about 
6 global human 
DNA’s worth of 

data



Extending BDEC to the edge

• Mar 2018
Chicago                       

• Nov 2018 
Indianapolis

• Feb 2019               
Kobe

• May 2019             
Poznan



3rd & 4th

Paradigms 
Separate

Paradigms 
Converged

The baton pass



2011 Roadmap report

The International Exascale 
Software Roadmap
J. Dongarra, et al., 
International Journal of High 
Performance Computer 
Applications 25:3-60, 2011



• Clock rates cease to increase while arithmetic 
capability continues to increase dramatically with 
concurrency consistent with Moore’s Law

• Memory storage capacity fails to keep up with 
arithmetic capability

• Transmission capability (memory bandwidth, 
network bandwidth) fails to keep up with 
arithmetic capability

Exascale architectural drivers

è Billions of € £ $ ¥ of scientific applications 
worldwide hang in the balance until algorithms better 

span the growing architecture-applications gap



Two decades of evolution

ASCI Red at Sandia 
1.3 TF/s, 850 KW

1997

Cavium ThunderX2
~ 1.1 TF/s, ~ 0.2 KW

2017

3.5 orders of 
magnitude



Top 10 architecture trends, 2010-2018

c/o Keren Bergman (Columbia, ISC’18)



Top 10 architecture trends, 2010-2018

Sunway TaihuLight (Nov 2017) B/F = 0.004; 

Summit HPC (June 2018) B/F = 0.0005
8x deterioration 

in 2018

c/o Keren Bergman (Columbia, ISC’18)



It’s not just bandwidth; it’s energy

● Access SRAM (registers, cache) ~   10 fJ/bit
● Access DRAM on chip ~    1 pJ/bit
● Access HBM (few mm) ~   10 pJ/bit
● Access DDR3 (few cm) ~ 100 pJ/bit

similar ratios for latency  as for bandwidth and 
energy

~ 104 advantage in energy for staying in cache!



Algorithmic philosophy
Algorithms must span a widening gulf …

A full employment program 
for algorithm developers J

ambitious 
applications

austere 
architectures

adaptive 
algorithms



èBillions of 

$ € £ ¥

of scientific software worldwide hangs in the 
balance until our algorithmic infrastructure 
evolves to span the architecture-applications 
gap



Required software

Model-related
– Geometric modelers
– Meshers
– Discretizers
– Partitioners
– Solvers / integrators
– Adaptivity systems
– Random no. generators
– Subgridscale physics 
– Uncertainty 

quantification
– Dynamic load balancing
– Graphs and 

combinatorial algs.
– Compression 

Development-related
- Configuration systems
- Source-to-source 

translators
- Compilers
- Simulators

- Messaging systems
- Debuggers
- Profilers

Production-related
- Visualization systems
- Dynamic resource 

management
- Dynamic performance 

optimization

- Authenticators
- I/O systems
- Workflow controllers

- Frameworks
- Data miners
- Fault monitoring, 

reporting, and 
recovery

High-end computers come 
with little of this. Most is 
contributed by the user  

community.



Embracing the opportunities of exascale



Architectural imperatives for algorithms
• Reduce synchrony

– in frequency or span or both
– cannot afford to synchronize a billion imbalanced cores

• Reside “high” on the memory hierarchy
– as close as possible to the processing elements
– latency to DRAM may be a thousand cycles 
– moving data is orders of magnitude more costly in energy 

than computing

• Increase SIMT/SIMD-style shared-memory 
concurrency

– one instruction can trigger 8 (AVX 512) to 64 (tensor core) 
operations



Exascale algorithmic strategies
• Employ dynamic runtime systems 

based on directed acyclic task graphs 
(DAGs)

– e.g., ADLB, Argo, Charm++, HPX, Legion, 
OmpSs, Quark, STAPL, StarPU, OpenMP 

• Exploit hierarchical low-rank data 
sparsity

– meet “curse of dimensionality” with 
“blessing of low rank”  

• Code to the architecture, but present 
an abstract API

– “hourglass model” of IP/TCP for 
processors
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1) Taskification based on DAGs
• Advantages

– remove artifactual synchronizations in the 
form of subroutine boundaries

– remove artifactual orderings in the form of 
pre-scheduled loops

– expose more concurrency
• Disadvantages

– pay overhead of managing task graph
– potentially lose some memory locality



2) Hierarchically low-rank operators
• Advantages

– shrink memory footprints to live higher on 
the memory hierarchy
• higher means quick access (↑ arithmetic 

intensity)
– reduce operation counts
– tune work to accuracy requirements

• e.g., preconditioner versus solver
• Disadvantages

– pay cost of compression
– not all operators compress well



3) Code to the architecture
• Advantages

– tiling and recursive subdivision create large 
numbers of small problems that can be 
marshaled for batched operations on GPUs 
and MICs

• amortize call overheads
• polyalgorithmic approach based on block size

– non-temporal stores, coalesced memory 
accesses, double-buffering, etc. reduce 
sensitivity to memory

• Disadvantages
– code is more complex
– code is architecture-specific at the bottom



1) Reduce over-ordering and synchronization 
through DAGs, ex.: generalized eigensolver



Loop nests and subroutine calls, with their 
over-orderings, can be replaced with DAGs

● Diagram shows a 
dataflow ordering of the 
steps of a 4×4 symmetric 
generalized eigensolver

● Nodes are tasks, color-
coded by type, and edges 
are data dependencies

● Time is vertically 
downward

● Wide is good; short is 
good
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2) Reduce memory footprint and 
operation complexity with low rank

• Replace dense blocks with hierarchical 
representations when they arise during 
matrix operations
– use high accuracy (high rank, but typically less 

than full) to build “exact” solvers
– use low accuracy (low rank) to build 

preconditioners
• Tune block structure and rank parameters to 

variety of hardware configurations



Key tool: hierarchical matrices

• [Hackbusch, 1999] : off-diagonal blocks of typical 
differential and integral operators have low effective rank

• By exploiting low rank, k , memory requirements and 
operation counts approach optimal in matrix dimension n:
– polynomial in k
– lin-log in n
– constants carry the day

• Such hierarchical representations navigate a compromise
– fewer blocks of larger rank (“weak admissibility”) or 
– more blocks of smaller rank (“strong admissibility”)



Recursive construction of an H-matrix

Specify two parameters:

n Block size acceptably 
small to handle 
densely

n Rank acceptably 
small to represent 
block

Until each block is 
acceptably small:
n Is rank acceptably 

small?
n If not, subdivide 

block
Take union of leaf blocks

A0 A1 A2 A3 A4Step 0 Step 1 Step 2 Step 3 Step 4



3) “Hourglass” model for algorithms
(borrowed from internet protocols)

applications

architectures

algorithmic 
infrastructure



dense tiles 
Cholesky: O(n3)

tile low rank 
Cholesky: O(kn2)

TILE LOW-RANK ALGORITHMS CHOLESKY FACTORIZATION SOFTWARE STACK 

A collaboration of With support from Sponsored by 

Centre	de	recherche		
BORDEAUX	–	SUD-OUEST	

HIERARCHICAL	COMPUTATIONS	ON	MANYCORE	ARCHITECTURES	

The Hierarchical Computations on Manycore Architectures (HiCMA) library aims to redesign existing dense linear algebra 
libraries to exploit the data sparsity of the matrix operator. Data sparse matrices arise in many scientific problems (e.g., 
in statistics-based weather forecasting, seismic imaging, and materials science applications) and are characterized by 
low-rank off-diagonal tile structure. Numerical low-rank approximations have demonstrated attractive theoretical bounds, 
both in memory footprint and arithmetic complexity. The core idea of HiCMA is to develop fast linear algebra 
computations operating on the underlying tile low-rank data format, while satisfying a specified numerical accuracy and 
leveraging performance from massively parallel hardware architectures.  

HiCMA 0.1.0 
•  Matrix-Matrix Multiplication 
•  Cholesky Factorization/Solve 
•  Double Precision 
•  Task-based Programming Models 
•  Shared and Distributed-Memory 

Environments 
•  Support for StarPU Dynamic 

Runtime Systems 
•  Testing Suite and Examples 

CURRENT RESEARCH 
•  LU Factorization/Solve 
•  Schur Complements 
•  Preconditioners 
•  Hardware Accelerators 
•  Support for Multiple Precisions 
•  Autotuning: Tile Size, Fixed Accuracy and 

Fixed Ranks 
•  Support for OpenMP, PaRSEC and Kokkos 
•  Support for HODLR, H, HSS and H2  

GEOSPATIAL STATISTICS 
N = 20000, NB = 500, acc=109, 2D problem sq. exp. 

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/hicma 

PERFORMANCE RESULTS CHOLESKY FACTORIZATION – DOUBLE PRECISION – CRAY XC40 WITH TWO-SOCKET, 16-CORE HSW 

Performance Results 

State-of-the-Art 

A collaboration of With support from Sponsored by 

Centre	de	recherche		
BORDEAUX	–	SUD-OUEST	

A	QDWH-Based	SVD	So=ware	Framework	on	Distributed-Memory	Manycore	Systems		

The KAUST SVD (KSVD) is a high performance software framework for computing a dense SVD on distributed-memory 
manycore systems. The KSVD solver relies on the polar decomposition using the QR Dynamically-Weighted Halley 
algorithm (QDWH), introduced by Nakatsukasa and Higham (SIAM Journal on Scientific Computing, 2013). The 
computational challenge resides in the significant amount of extra floating-point operations required by the QDWH-based 
SVD algorithm, compared to the traditional one-stage bidiagonal SVD. However, the inherent high level of concurrency 
associated with Level 3 BLAS compute-bound kernels ultimately compensates the arithmetic complexity overhead and 
makes KSVD a competitive SVD solver on large-scale supercomputers.  

The Polar Decomposition 
Ø  A = UpH, A in Rmxn (m≥n) , where Up is 

orthogonal Matrix, and H is symmetric 
positive semidefinite matrix 

Application to SVD 
Ø  A = UpH 
         = Up(VΣVT) = (UpV)ΣVT

 = UΣVT 

QDWH Algorithm  
Ø  Backward stable algorithm for computing the 

QDWH-based SVD 
Ø  Based on conventional computational kernels, 

i.e., Cholesky/QR factorizations (≤ 6 iterations 
for double precision) and GEMM 

Ø  The total flop count for QDWH depends on 
the condition number�of the matrix	

KSVD 1.0  
Ø  QDWH-based Polar Decomposition 
Ø  Singular Value Decomposition 
Ø  Double Precision 
Ø  Support to ELPA Symmetric Eigensolver 
Ø  Support to ScaLAPACK D&C and MR3  

       Symmetric Eigensolvers 
Ø  ScaLAPACK Interface / Native Interface 
Ø  ScaLAPACK-Compliant Error Handling 
Ø  ScaLAPACK-Derived Testing Suite 
Ø  ScaLAPACK-Compliant Accuracy  

Current Research 
Ø  Asynchronous, Task-Based QDWH  
Ø  Dynamic Scheduling 
Ø  Hardware Accelerators  
Ø  Distributed Memory Machines  
Ø  Asynchronous, Task-Based  
       QDWH-SVD  
Ø  QDWH-based Eigensolver  
       (QDWH-EIG)  
Ø  Integration into PLASMA/

MAGMA 

Advantages 
Ø  Performs extra flops but nice flops  
Ø  Relies on compute intensive kernels  
Ø  Exposes high concurrency  
Ø  Maps well to GPU architectures  
Ø  Minimizes data movement  
Ø  Weakens resource synchronizations  

Download the software at http://github.com/ecrc/ksvd 

Chameleon 1.9 

A collaboration of With support from Sponsored by 

A HIGH PERFORMANCE STENCIL FRAMEWORK USING 
WAFEFRONT DIAMOND TILING 
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The Girih framework implements a generalized multi-dimensional intra-tile parallelization  scheme for shared-cache 
multicore processors that results in a significant reduction  of cache size requirements for temporally blocked stencil 
codes.. It ensures data access patterns that allow efficient hardware prefetching and TLB utilization across a wide range 
of architectures. Girih is built on a multicore wavefront diamond tiling approach to reduce horizontal data traffic in favor of 
locally cached data reuse. The Girih library reduces cache and memory bandwidth pressure, which makes it amenable to 
current and future cache and bandwidth-starved architectures, while enhancing performance for many applications. 

STENCIL COMPUTATIONS 
•  Hot spot in many scientific codes 
•  Appear in finite difference, element, and volume 

discretizations of PDEs 
•  E.g., 3D wave acoustic wave equation: 

DOWNLOAD THE SOFTWARE AT http://github.com/ecrc/girih 

PERFORMANCE RESULTS 8TH ORDER IN SPACE AND 2ND ORDER IN TIME – DOUBLE PRECISION 

MULTI-DIMENSIONAL INTRA-TILE PARALLELIZATION 

Thread assignment in space-time dimensions 

i

k

j

7-point stencil 25-point stencil 
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Run8me)system)

Stencil)
Kernels)
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Specs.)

SOFTWARE INFRASTRUCTURE 

Girih system components 

GIRIH 1.0.0 
•  MPI + OpenMP 
•  Single and double precision 
•  Autotuning 
•  Short and long stencil ranges in 

space and time 
•  Constant/variable coefficients 
•  LIKWID support for profiling 

CURRENT RESEARCH 
•  Matrix power kernels 
•  Overlapping domain decomposition 
•  GPU hardware accelerators: 

•  OpenACC / CUDA 
•  Out-of-core algorithms 
•  Dynamic runtime systems 
•  Extension to CFD applications 

Diamond tiling versus Spatial Blocking on SKL Diamond tiling performance across Intel x86 generations •  Domain size: 512 x 512 x 512 
•  # of time steps: 500 
•  25-point star stencil 
•  Dirichlet boundary conditions 
•  Two-socket systems (Mem./L3):  
- 8-core Intel SNB (64GB/20MB) 
- 16-core Intel HSW (128GB/40MB) 
- 28-core Intel SKL (256GB/38MB) 
•  Intel compiler suite v17 with 

AVX512 flag enabled 
•  Memory affinity with numatcl 

command 
•  Thread binding to cores with 

sched_affinity command 

A collaboration of With support from Sponsored by

Centre	de	recherche	
BORDEAUX	– SUD-OUEST

PARALLEL HIGH PERFORMANCE UNIFIED FRAMEWORK FOR GEOSTATISTICS ON MANY-CORE SYSTEMS

The Exascale GeoStatistics project (ExaGeoStat) is a parallel high performance unified framework for computational
geostatistics on many-core systems. The project aims at optimizing the likelihood function for a given spatial data to provide an
efficient way to predict missing observations in the context of climate/weather forecasting applications. This machine learning
framework proposes a unified simulation code structure to target various hardware architectures, from commodity x86 to GPU
accelerator-based shared and distributed-memory systems. ExaGeoStat enables statisticians to tackle computationally
challenging scientific problems at large-scale, while abstracting the hardware complexity, through state-of-the-art high
performance linear algebra software libraries.

ExaGeoStat 0.1.0
• Large-scale synthetic geo-

spatial datasets generator

• Maximum Likelihood 
Estimation (MLE)
- Synthetic and real datasets

• A large-scale prediction tool 
for unknown measurements 
on known locations

Current Research
• ExaGeoStat R-wrapper 

package

• Tile Low Rank (TLR) 
approximation

• NetCDF format support

• PaRSEC runtime system

• In-situ processing

ExaGeoStat Dataset Generator
• Generate 2D spatial Locations using uniform 

distribution. 
• Matérn covariance function:

! "; $ = 	 $'
(($*+')-($*)

	 "
$(

$*
.$*
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• Cholesky factorization of the covariance matrix:
∑ $ = 0	. 02�
�

• Measurement vector generation (Z):
4 = 	0	. 5, 				 57	~9(:, ')

ExaGeoStat Maximum Likelihood Estimator
• Maximum Likelihood Estimation (MLE)  learning function:
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Where C $ 	is a covariance matrix with entries
C7D = ! E7 − ED; $ , 7, D = ',… , =

• MLE prediction problem
4'
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With  J'' ∈ 	LG×G, J'(LG×=, J(' ∈ 	L=×G,
and J(( ∈ 	L=×=

• The associated conditional distribution
where 4'	represents a set of unknown
measurements :
4'|4(		~	9G(I' + J'(J((

B'	 4(	 − 	I( , J'' 	− J'(	J((
B'J(')

Performance Results (MLE)
Two-socket shared memory Intel x86 architectures

Figure: An example of 400
points irregularly distributed in
space, with 362 points (ο) for
maximum likelihood estimation
and 38 points (×) for prediction
validation.

Figure: Mean square error for predicting 
large scale synthetic dataset.

Figure: Two different examples of real datasets (wind speed dataset in the middle east region
and soil moisture dataset coming from Mississippi region, USA).

Intel two-socket Haswell + NVIDIA K80 Cray XC40 with two-socket, 16 cores Haswell

DOWNLOAD THE LIBRARY AT http://github.com/ecrc/exageostat

ExaGeoStat Predictor
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Place your text here A HIGH PEFORMANCE MULTI-OBJECT ADAPTIVE OPTICS FRAMEWORK 
FOR GROUND-BASED ASTRONOMY 

The Multi-Object Adaptive Optics (MOAO) framework provides a comprehensive testbed for high performance 
computational astronomy. In particular, the European Extremely Large Telescope (E-ELT) is one of today’s most challenging 
projects in ground-based astronomy and will make use of a MOAO instrument based on turbulence tomography. The 
MOAO framework uses a novel compute-intensive pseudo-analytical approach to achieve close to real-time data processing 
on manycore architectures. The scientific goal of the MOAO simulation package is to dimension future E-ELT instruments 
and to assess the qualitative performance of tomographic reconstruction of the atmospheric turbulence on real datasets. 

DOWNLOAD THE SOFTWARE AT h6p://github.com/ecrc/moao	

THE MULTI-OBJECT ADAPTIVE OPTICS TECHNIQUE 

Single conjugate AO concept Open-Loop tomography concept Observing the GOODS South 
cosmological field with MOAO 

MOAO 0.1.0 
•  Tomographic Reconstructor Computation 
•  Dimensioning of Future Instruments 
•  Real Datasets 
•  Single and Double Precisions 
•  Shared-Memory Systems 
•  Task-based Programming Models 
•  Dynamic Runtime Systems 
•  Hardware Accelerators 

CURRENT RESEARCH 
•  Distributed-Memory Systems 
•  Hierarchical Matrix Compression 
•  Machine Learning for Atmospheric Turbulence 
•  High Resolution Galaxy Map Generation 
•  Extend to other ground-based telescope projects 

PERFORMANCE RESULTS TOMOGRAPHIC RECONSTRUCTOR COMPUTATION – DOUBLE PRECISION  

High res. map of the quality of 
turbulence compensation obtained 
with MOAO on a cosmological field 

THE PSEUDO-ANALYTICAL APPROACH 

System
Parameters

Turbulence
Parameters

matcov Cmm Ctm ToR

matcov Cmm Ctm

Ctt

Cee CvvBLAS BLAS

Inter-
sample

R

ToR computation

Observing sequence

•  Compute the tomographic error:  
 Cee = Ctt - Ctm RT – R Ctm

T + R Cmm RT 
•  Compute the equivalent phase map:  

 Cvv = D Cee DT 
•  Generate the point spread function image  

Two-socket 18-core Intel HSW – 64-core Intel KNL – 8 NVIDIA GPU P100s (DGX-1) 

•  Solve for the 
tomographic 
reconstructor R: 
R x Cmm = Ctm 

This is one tomographic 
reconstructor every 25 

seconds! 
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Software for Testing Accuracy, Reliability and
Scalability of Hierarchical computations

STARS-H is a high performance parallel open-source package of Software for Testing Accuracy, Reliability and Scalability
of Hierarchical computations. It provides a hierarchical matrix market in order to benchmark performance of various libraries
for hierarchical matrix compressions and computations (including itself). Why hierarchical matrices? Because such matrices
arise in many PDEs and use much fewer memory, while requiring less flops for computations. There are several hierarchical
data formats, each one with its own performance and memory footprint. STARS-H intends to provide a standard for assessing
accuracy and performance of hierarchical matrix libraries on a given hardware architecture environment. STARS-H currently
supports the tile low-rank (TLR) data format for approximation on shared and distributed-memory systems, using MPI, OpenMP
and task-based programming models. STARS-H package is available online at https://github.com/ecrc/stars-h.

Roadmap of STARS-H
• Extend to other problems in a matrix-

free form.
• Support HODLR, HSS, ℋ and ℋ"

data formats.
• Implement other approximation

schemes (e.g., ACA).
• Port to GPU accelerators.
• Apply other dynamic runtime systems

and programming models (e.g.,
PARSEC).

STARS-H 0.1.0
• Data formats: Tile Low-Rank (TLR).
• Operations: approximation, matrix-

vector multiplication, Krylov CG solve.
• Synthetic applications in a matrix-free

form: random TLR matrix, Cauchy
matrix.

• Real applications in a matrix-free
form: electrostatics, electrodynamics,
spatial statistics.

• Programming models: OpenMP, MPI
and task-based (StarPU).

• Approximation techniques: SVD,
RRQR, Randomized SVD.

TLR Approximation of 2D problem on a two-socket 
shared-memory Intel Haswell architecture

3D problem on different two-socket shared-
memory Intel x86 architectures

3D problem on a different amount of nodes (from 64 up to 6084) of a distributed-memory 
CRAY XC40 system for a different error threshold #

Matrix Kernels
• Electrostatics (one over distance):

$%& =
1
)%&

• Electrodynamics (cos over distance):

$%& =
cos(.)%&)	

)%&
• Spatial statistics (Matern kernel):

$%& =
2234
Γ 6 26� )%&

8
4
94 26� )%&

8
• And many other kernels …

Heatmap of ranks (2D problem)

Sample Problem Setting
Spatial statistics problem for a quasi
uniform distribution in a unit square
(2D) or cube (3D) with exponential
kernel:

$%& = :
3;<=
> ,

where 8 = 0.1 is a correlation length
parameter and )%& is a distance
between B-th and C-th spatial points.
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in NVIDIA cuBLAS in Cray LibSci
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Software implementing these strategies



“A good player plays where the puck is, while a great 
player skates to where the puck is going to be.” 

– Wayne Gretzsky
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Architectural “trickles”
• HPC hardware architecture has “trickle down” 

benefits
– “Petascale in the machine room means terascale 

on the node.” [Petaflops Working Group, 1990s]
– Extrapolating: exascale on the machine room floor 

means petascale under the desk.

• HDA software architecture has “trickle back” 
benefits
– “Google is living a few years in the future and 

sends the rest of us messages.” [Doug Cutting, 
Hadoop founder]



Motivations for convergence
• Scientific and engineering advances

– tune physical parameters in simulations for 
predictive performance

– tune algorithmic parameters of simulations for 
execution performance

– filter out nonphysical candidates in learning
– provide data for learning

• Economy of data center operations
– obviate I/O
– obviate computation!

• Development of a competitive workforce
– leaders in adopting disruptive tools have 

advantages in capability and in recruiting



References to the 
community reports

• exascale.org/bdec
– http://www.exascale.org/bdec/sites/www.exascale.org

.bdec/files/whitepapers/bdec2017pathways.pdf
– “Big Data and Extreme-scale Computing: Pathways to 

Convergence,” M. Asch, et al., Int. J. High Perf. 
Comput. Applics. 32:435-479, 2018

• exascale.org/iesp
– http://www.exascale.org/mediawiki/images/2/20/IESP-

roadmap.pdf
– “The International Exascale Software Roadmap,” J. 

Dongarra, et al., Int. J. High Perf. Comput. Applics. 
25:3-60, 2011

http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/whitepapers/bdec2017pathways.pdf
http://www.exascale.org/mediawiki/images/2/20/IESP-roadmap.pdf


Concluding prediction

nNo need to force a “shotgun” marriage of 
“convergence” between 3rd and 4th paradigms
- a love-based marriage is inevitable in the near 

future

nDriver will be opportunity for both 3rd and 4th

paradigm communities to address their own 
traditional concerns in a superior way in 
mission-critical needs in scientific discovery and 
engineering design



Thank you!

david.keyes@kaust.edu.sa


