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High-resolution imaging particle physics detectors 

•  E.g. Deep Underground Neutrino Experiment (DUNE)	

4 neutrino 
detector modules 
1 mile underground	

[https://www.dunescience.org/] 	
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What is DUNE “looking for”? 

•  Rare interactions of (otherwise) invisible particles:	
•  Neutrinos from a beam produced at the Fermi US 

National Lab (~few hundred per year)	
•  Neutrinos produced in cosmic ray air showers in the 

atmosphere (~few thousand per year)	
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What is DUNE “looking for”? 

•  Rare interactions of (otherwise) invisible particles:	
•  Neutrinos from a beam produced at the Fermi US 

National Lab (~few hundred per year)	
•  Neutrinos produced in cosmic ray air showers in the 

atmosphere (~few thousand per year)	
•  Neutrinos produced in a (potential) nearby supernova 

burst (up to ~few thousand over 10 seconds, but ~once 
per century)	

•  Protons or neutrons inside the detector volume (liquid 
argon) spontaneously “decaying” in a way that violates 
fundamental symmetries of nature (~1 per year)	

	
Rare processes,  
of fundamental importance  
in nature!	
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What would DUNE “see”? 
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What would DUNE “see”? 

•  For the most part:	

Single frame from high-resolution video:  
One of three 2D views from one of hundreds  
of cells in the detector	
	
Color scale represents energy deposition 
(due to ionization) in the detector	
	
“Static” is noise and small energy deposits 
from radiological impurities in the detector	

time	

ch
an

ne
l	

[simulation]	
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What would DUNE “see”? 

•  What events of interest would look like:	

	

•  Easy to pick out from background!	
•  On an event-by-event basis, difficult to differentiate between them	
•  On average, events can be differentiated based on their energy (pixel 

intensity) and topology characteristics (spatial extent, shape, e.g. tracks vs. 
showers and multiplicity, connected vs. detached, …)	

	

Atmospheric neutrino	
Neutron-antineutron  
oscillation	 Cosmic ray 	

Proton decay	
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Not all events of interest are as easy to pick out! 

•  Special challenge: neutrinos from supernova core collapse	
•  Very low energy and small (in extent) topology, similar to radiological 

background activity in the detector	

•  Need O(104) background suppression, while maintaining high 
efficiency to a frame containing a supernova neutrino interaction	

See: yesterday’s talk by P. Nugent	
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•  Special challenge: neutrinos from supernova core collapse	
•  Very low energy and small (in extent) topology, similar to radiological 

background activity in the detector	

•  Need O(104) background suppression, while maintaining high 
efficiency to a frame containing a supernova neutrino interaction	

Radiological background only	SN interaction + 
radiological background 	

See: yesterday’s talk by P. Nugent	
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DUNE detector: working principle* 

•  particle-imaging detector	

•  stereoscopic “video capture” of 
activity within detector volume 
with sub-mm spatial resolution	

•  high-resolution “video” streams: 	
•  up to 4x150 cell volumes	
•  11.5 megapixel frames per 

2.25ms 	
•  12-bit resolution 	

•  a total of ~40 terabits/s	

•  continuous operation for  
more than a decade 	

See: Poster #8, Session #2, by J. I. Crespo-Anadon	
	

*shown only for “single-phase” module technology; ~similar “dual-phase” module 	
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Promise of imaging techniques for DUNE 

•  Raw data format ideally suited for image analysis	
•  Convolutional Neural Networks (CNNs) could be applied for image 

classification “on the fly”	
•  Work with only one projection (2D): 4.3 megapixel 	
•  Down-sample and resize image to 0.36 megapixel	
•  Classify via CNN as one of three cases:  

background/supernova-like low energy activity/high-energy activity	

	
	

raw image  
input  

(4450x960)	

downsampling, 
resizing (600x600)	

CNN  
classification	

selection (e.g., 
lowest background 

class score)	

bkgd	

SN LE	
HE	
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Promise of imaging techniques for DUNE 

•  Classification studies performed for DUNE simulated frames using  
CNN vgg16b:	

	
	
•  High selection efficiency across all topologies of interest	
         	 ✔ CNN-based selection on unprocessed, raw data	
•  Further improvements possible by considering time-coincidence of 

activity over multiple (sequential) frames	

rarest	 rare	
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Promise of imaging techniques for DUNE 

•  Deep Learning techniques already applied successfully in detectors 
sharing the same technology as DUNE	

•  E.g. MicroBooNE experiment (1/500th size of DUNE) is pioneering 
such applications	

See, e.g.:  
[1] “Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon 
time projection chamber,” Phys. Rev. D99 (2019) No. 9, 092001.   	
[2] “Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber,” 
JINST 12 (2017) No. 03, P03011.	

[1]	
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Promise of imaging techniques for DUNE 

•  Deep Learning techniques already applied successfully in detectors 
sharing the same technology as DUNE	

•  E.g. MicroBooNE experiment (1/500th size of DUNE) is pioneering 
such applications	

See, e.g.:  
“Deep neural network for pixel-level electromagnetic particle identification in the MicroBooNE liquid argon time 
projection chamber,” Phys. Rev. D99 (2019) No. 9, 092001.   	
“Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber,” JINST 
12 (2017) No. 03, P03011.	

CNNs can be trained to 
do particle classification, 

particle and neutrino 
detection, and neutrino 
event identification [2].	
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DUNE readout and data acquisition system design 

1 mile underground 
in South Dakota	

above ground 
in South Dakota	

off-site permanent  
data storage and offline  

processing in Illinois,  
and international sites	

100 Gbps	

real-time or  
batch processing 
	

batch  
processing	

~few Tbps	

40 Tbps	

de
te

ct
or

	

[DUNE Technical Design Report, in preparation.]	
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Example: Real-time waveform 
processing (hit finding) in FPGA in 
the MicroBooNE readout.	
	
See: Poster #8, Session #2,  
by J. I. Crespo-Anadon	

[DUNE Technical Design Report, in preparation.]	
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•  Flexibility for potential implementation of 
Deep Neural Networks for image-analysis-
based data selection	

•  Must keep within cost and performance 
constraints: latency, power, cost envelope	
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Performance for batch processing for data selection  
with GPU implementation 

•  GPU advantages: High computational density, level of programmability, 
data-parallelism, flexibility	

•  Investigated CNN-based selection performance (latency) for DUNE 
simulated frames: 
On single GPU (NVIDIA GeForce GXT 1080 Ti)	
•  vgg16b 	26 ms/frame (compare to 2.25ms frame)	
•  resnet14b 	24 ms/frame 	
Includes data i/o and network inference time	

•  Speed sufficient for downstream implementation; but a factor of 10 speedup 
needed for upstream implementation (power constraints aside…)	
•  Further optimization may be possible: e.g. image size: further down-sampling vs. 

region-of-interest 	
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R&D for real-time processing for data selection  
with FPGA implementation 

•  Advantages for upstream (FPGA) implementation: reduction in overall 
data transfer to above ground, buffering needs, power dissipation	
•  FPGA: power-aware platform for CNN acceleration, but resource-constrained	
•  Concern: network size (resnet14b, vgg16b) and input image size are large 	

	
•  Exploring CNN acceleration using a 

customizable and efficient hardware 
accelerator design for the various layers 
of CNN, utilizing High Level Synthesis-
based design flow	

•  Flexibility for optimization (processing 
time, efficiency, resource utilization)	
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Design Flow for FPGA Accelerators 

	
	

•  Register Transfer Level (RTL) is a low level representation of digital 
circuits and is a de facto standard for designing hardware	

•  High Level Synthesis (HLS) allows hardware designers to take 
advantage of benefits of working at a higher level of abstraction, 
while creating high-performance hardware	
•  HLS allows to efficiently and rapidly perform Design Space Exploration 

(DSE)	
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High Level Synthesis 

•  HLS transforms a behavioral 
description into timed design	

•  This is done in three steps: 
scheduling, binding and 
technology mapping	

int func(int a, int b, int c, int d) { 
  int z; 
  z = (a + b) * c + d + a; 
  return z; 
} 
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Knobs of High Level Synthesis 

•  HLS allows to control fine-grain 
architectural implementation 
using pre-defined knobs	

•  Allow exploring concurrency in 
design, e.g.	

•  Can explore implementations 
based on desired performance 
(latency) and cost (area, power)	

void sum(int a[4], int b[4], int c[4]) { 
  for (int i = 0; i < 4; i++) { 
#pragma HLS UNROLL factor=1 
    c[i] = a[i] + b[i]; 
} 

performance	

co
st
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•  HLS allows to control fine-grain 
architectural implementation 
using pre-defined knobs	

•  Allow exploring concurrency in 
design, e.g.	

•  Can explore implementations 
based on desired performance 
(latency) and cost (area, power)	

void sum(int a[4], int b[4], int c[4]) { 
  for (int i = 0; i < 4; i++) { 
#pragma HLS UNROLL factor=2 
    c[i] = a[i] + b[i]; 
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•  HLS allows to control fine-grain 
architectural implementation 
using pre-defined knobs	

•  Allow exploring concurrency in 
design, e.g.	

•  Can explore implementations 
based on desired performance 
(latency) and cost (area, power)	

void sum(int a[4], int b[4], int c[4]) { 
  for (int i = 0; i < 4; i++) { 
#pragma HLS UNROLL factor=4 
    c[i] = a[i] + b[i]; 
} 
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Knobs of High Level Synthesis 

•  All of these implementations are 
optimal in terms of cost (area) 
and performance (latency)	

void sum(int a[4], int b[4], int c[4]) { 
  for (int i = 0; i < 4; i++) { 
  
    c[i] = a[i] + b[i]; 
} 
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Convolutional Layers 

•  Convolutional layers are the most computational intensive part in CNNs	

Distribution of floating-point 
operations per stages in vgg16b	
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Balance of Computation and Communication 

•  For hardware accelerator, one should carefully design the algorithm 
to reuse data as much as possible, thus reducing expensive memory 
transfers from and to off-chip DRAM	
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Tailoring Private Local Memory 

•  Both inputs and weights are divided in chucks and the computation 
is done only with the on-chip copy of the data	
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Accelerator Structure Overview 

•  Highly configurable accelerator	
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Preliminary Results 

Accelerator 

15x average speedup	
45x more power efficient	
w.r.t software implementation	
on ARM Cortex A53	

Xilinx ZynqMP UltraScale+ 	
XCZU9EG	
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Summary 

•  There is an increasing need for real-time processing of high-
resolution images from particle detectors 	

•  DUNE is a prime application for image processing using DNNs, and 
calls for optimizing DNN implementation on power-efficient 
platforms	

•  Serves as an ideal case for collaboration between physics and 
computer science	

	
•  Demonstrated applicability of DNN-based selection	
•  In the process of optimizing implementation on power-efficient platform	
•  Future plans: demonstration of real-time processing meeting performance and  

cost requirements	
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