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Al for Science Townhalls

Organized by Argonne, Oak Ridge and Berkeley with participation from all the
laboratories..

e Four “Townhalls” aimed at getting input from the DOE community on
opportunities and requirements for the next 5-10 years in computing
with a focus on convergence between HPC and Al

e July (Argonne), August (Denver), September (Berkeley), October

Modeling and

(WaShIngtOn) Simulation at the

Exascale for

e Modeled after the 2007 Townhalls that launched the Exascale Energy and the

Environment

Computing Initiative

e Each meeting covers roughly the same ground, geographically
distributed to enable local participation

e Applications in science, energy and technology

* Software, math and methods, hardware, data management,
computing facilities, infrastructure, integration with experimental
facilities, etc.

e Expect ~200 people per meeting
e Output will be a report to guide strategic planning at Labs and DOE




Innovation XLab Artificial Intelligence Summit

The next in the series of Innovation XLab events will be hosted by Argonne in
Chicago on October 2-3, 2019

e Event date confirmed for Oct 2-3, 2019

e 11 of 17 national labs actively involved in planning: ANL, LLNL, ORNL, LBNL, BNL, LANL, SNL, NETL,
FNAL,PNNL, SLAC

e Industry focus areas: Energy, Manufacturing, Healthcare, Risk

e Set up Steering and Program Committees consisting of Pls and tech transfer participants from all
the labs; regular calls held to coordinate input and ensure broad participation

 |nitial list of industry attendees generated with ~650 names

* |nitial list of speakers and panel participants generated with ~75 names

e Target agenda draft by June 21

e DOE-OTT weekly call with the Organizing Committee kicked off on June 10



In symbols one observes an
advantage in discovery which is
ogreatest when they express the exact
nature of a thing briefly and, as it
were, picture it; then indeed the
labor of thought is wonderfully

diminished.
— Gottfried Wilhelm Leibniz



DOE/Argonne was the home to a leading symbolic Al
group from the 1960’s to the mid 2000’s working on
Automated Theorem Proving
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. Algebraic Geometry

o Cancellative Semigroups on a Cubic Curve
o Uniqueness of the 5-ary Steiner Law

. Cancellative Semigroups
. Lattice Theory

o A Simpler Absorptive Basis for Lattice Theory

o A New Schema for Single Axioms

o A Shorter Single Axiom for Lattice Theory

o A Single Axiom for Weakly Associative Lattices
Quasilattice Theory
Uniqueness of Operations in Lattice-like Algebras
Self-dual Bases for Boolean Algebra
Self-dual 2-Basis for Group Theory
Self-dual Bases for Group Varieties
Quasigroup Theory

. Quasigroup Design Problems
. Single Axioms for Ternary Boolean Algebra
. Single Axioms for Groups

o Ordinary Groups

Abelian Groups

Exponent Groups

Some Permutative Varieties

Ordinary Groups (Kunen)

Groups of Exponent 4 (Kunen)

Odd Exponent Groups (Hart and Kunen)
Simple Bases for Moufang L.oops

Single Axioms for Inverse Loops and Subvarieties
Left Group and Right Group Calculi

Fixed Point Combinators

Semigroup Structure (F3B2)

Illative Combinatory Logic (Jech)

Robbins Algebra and Boolean Algebra
Equivalential Calculus Single Axioms
Semigroups, Antiautomorphisms, and Involutions
Independence of Ternary Boolean Algebra Axioms
Two-valued Sentential Calculus

Many-valued Sentential Calculus

Short Proofs in Various Logic Calculi

Pure Proofs in Equivalential Calculus

o O 0O 0O O O




ML Arxiv Papers

Machine Learning Arxiv Papers per Year

= ML Arxiv Papers = Moore's Law growth rate (2x/2 years)
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‘Things we can-dow'itb_Al now 7 = =

Learn predictiVe models from data-without réb/ing—upon theoryror deep
mechanistic understanding ( ;

Example: predicting materials and chemistry properties .
-

X

Learn approximate solutions to inverse problems where we have data
and models are not available or are inefficient

Example: phase retrieval in coherent x-ray imaging

Generate large collections of synthetic data that models real data
Example: synthetic sky in cosmology



Things We Want To-Do With Al In The Future

e Develop methods that can1earn from both encoded symbolic theory (e.g.
QM/GR) and large-scale data so we can leverage the vast theoretical
knowledge we have accumulated over hundreds of years

 Automate and accelerate discovery from planning, to conjecture, to
experiment, to confirmation and analysis = end-to-end automated
science

e Create an ability to use Al for generating new theories that address the
problematical areas of existing theories



In Ten Years...

* _earned Models Begin to Replace Data

—qgueryable,

* EXperimenta
—models rep

portable, pluggable, chainable, secure
Discovery Processes Dramatically Refactored

ace experiments, experiments improve models

» Many Questions Pursued Semi-Autonomously at Scale
—searching for materials, molecules and pathways, new physics

» Simulation and Al Approaches Merge
—deep integration of ML, numerical simulation and UQ

* Theory Becomes Data for Next Generation Al
—Al begins to contribute to advancing theory

* Al Becomes Common Part of Scientific Laboratory Activities
—Infuses scientific, engineering and operations






Materials and Chemistry

= Design of materials and molecules

» Al-guided synthesis
— automated design of chemical pathways ‘ = .
— mapping metastable phases e g ¥
— extracting mechanisms '

Metal ions and
complexes at liquid

» Predictive interfacial transport of ions and charge interfaces

Tian et al. PRL 2016

= Al-accelerated ab Initio molecular dynamics

(b)

= Quantification of energy drivers for separations

SrTio, LO
and TO

= Describing multiscale charge, spin, lattice correlations

“* FeTe LA

= Exploring energy landscapes in ultrafast, i
nonequilibrium, and driven systems and processes | e e

* [nverse design, bandstructure engineering Nonequilibrium superconductivity



Table 1: The opportunity areas described in this report, with observations on Al-related requirements and challenges.

E

| Area

| Al requirements and challenges

5.1

Al-Accelerated Ab
Molecular Dynamics
Catalysis

Initio
for

Methods development to enable application of ML/AI methods to ex-
tremely large collections of samples obtained from simulation studies,
and for efficient coupling of simulation and Al components.

Ultra-Fast Simulations of
Complex Materials

Processing billions of DFT energy evaluations is likely to require ex-
tremely large neural networks. Handling data from multiple sources i1s
also a key need.

Designing New Chemical
Pathways Automatically

Tight integration with experiment. Reinforcement learning and active
learning algorithms to guide experimental campaigns. Representation
and update of kinetic table and associated uncertainties.

Inversion of
Characteriza-

Real-time
Multi-modal
tion Data

Requires methods for integrating physical constraints into neural net-
works (NNs). May also build up large enough NN to require specialized
Al accelerators.

Panoramic Synthesis for Dis-
covery and Deployment of
New Materials

Would benefit from symbolic Al to create human-interpretable (and, ide-
ally, scientifically testable) design rules for panoramic synthesis.

Al-Driven Material Discov-
ery for Energy Storage

Tight integration with computational simulation. Reinforcement learning
and active learning algorithms to guide computational campaigns.

Discovery and Design of
Magnetic Topological Mate-
rials and Magnetic Order

Learning from small data. Transfer learning between different classes of
materials. Integration of experimental and simulation data.

Al-Generated Designs of
Unconventional Structures

Requires method development for generative models for networks/paths
and supervised learning methods on graphs/path data.

Comprehensive  Atlas  of
Phase Diagrams of All
(Meta)Stable Materials

Requires advances in natural language processing (NLP) and in methods
for propagating uncertainty through many different supervised learning
and physical models.

Optimizing Gas-phase
Chemistry for Scale-up of
Complex Materials

Al-based surrogate models for manufacturing processes are needed that
can enable near-real-time feedback; current multi-scale simulation meth-
ods take days or weeks.




Advanced Photon Source Upgrade
Al can drive the scientific and measurement motifs enabled by APS-U

Detect rare events/features in large volumes Metal fatigue, solid-state batteries, APS-U’s 2-3 orders of magnitude
with nanoscale resolution brain circuitry increased brightness and coherent
. Catalyst coarsening, precision flux, will lead to:
Capture dynamic processes synthesis, additive manufacturing Massive data, too much for humans
to handle
Enable multidimensional inquiry, exploring spaces High-entropy alloys, metal fatigue, = Data rates too fast for human
of higher dimension and size catalysts management
Control: real-time autonomous execution

\ 4 Analyze: reconstruct, feature extraction,

viz, optimized photon dose

Fast, many *
megapixel detectors

aetector

Neural Netweark

Zone Plate Sample
(on-the-fly) (slow)

5 W~

Advanced accelerator control: Al at the edge:
100’s of control points, 1000’s of inputs autonomous data reduction near the source

32x32x1

3
5
0




Climate and Biology

Accelerated Climate Models (PDE/ML hybrids)

Improved integration of remote sensing and ground truthing into
Climate Models (cloud/precipitation, land cover/biogeochem, sea
ice/calibration, etc.)

Improvement in ARM data pipelines, automated model extraction from
data, smart data fusion

Vast applications in genomics and metagenomics (G = P)

Automation of bioinformatics methods (improved productivity)
Automating hypothesis formation in biology (causal analysis)

Forward design of novel pathways, proteins, regulons, operons,
organisms, etc. for secure biodesign

Environment

Genotype ——— Phenotype

Genome Wide Association Studies

Anomaly detection (discovery in seguencing, biosecurity, etc.)




High Energy Physics

Energy/Intensity Frontier:

® Search for Beyond the Standard Model (BSM) physics
through Al-driven anomaly detection

® Al-reduced uncertainties to enable precision electroweak
measurements for BSM clues

®  Generative Adversarial Networks (GANS) for large-scale
Large Hadron Collider detector simulation

Cosmic Frontier — Al in end-to-end application:

®  Precision Cosmic Microwave Background emulation — Al
simulation speed-up of a factor of 1000

®  Search for strong lensing of galactic sources for precision
cosmology measurements using Al classification,
regression, and GANs for image generations

B Al-based Photometric Redshift Estimation

® Combination of Al methods to enable searches for hidden
space variables

Initial Conditions Code

Gaussian
Random Field

High-Resolution
N-Body/Hydro

Multiple Outputs
Halo/Sub-Halo
Identification

Halo Merger
Trees
Galaxy Modeling

Value-Added
Source Catalogs
Realistic Image
Catalogs

Atmosphere and
Instrument
Modeling

."._si'mUIa'teg;- Image’ - Actual Image '

Data Analysis Data Management
Pipeline Pipeline

Al applications in an “end-to-end” Cosmic Frontier
application: 1) GANs for image emulation, 2) GP and DL-
based emulators for summary statistics, 3) CNN-based image
classification, 4) Al-based photometric reshift estimation, 5)
Likelihood-free methods for inference [Work performed under
the Argonne-led SciDAC-4 project: “Inference and Machine
Learning at Extreme Scales”]

Scientific
Inference
Framework




Nuclear Physics

= Al- and deep learning-guided insight to unravel new physics in quantum
chromodynamics

— Active Learning and Generative Adversarial Networks (GANS) to discover new
sum rules and violations of constraints

= Al and deep learning for ATLAS and Electron-lon Collider to probe fundamental
guestions: How do mass and spin of nucleons arise, how do nucleosynthesis and
stellar evolution produce current abundances?

— Deep neural network for detector and accelerator design optimization Pivki s §

— GAN:s for self-tuning performance-maximizing detector configurations and
time-saving online accelerator tuning in multi-oeam/multi-detector experiments

— Al-assisted data analysis of many-body break-up and dynamics: tag recoll
spectators to isolate struck nucleon

LG S

= Al-driven data analysis of neutrino-less double beta decay

= Sparse neural network with scalable machine learning techniques accelerate Transverse momentum slices of U
and d quarks in a longitudinally

computations and extend range of experiments polarized proton.

= GANSs and segmentation networks improve detector understanding and
resolution



Connecting HPC and Al

In addition to partnerships in Al applications, there are considerable
opportunities in foundational methods development, software and software
infrastructure for Al workflows and advanced hardware architectures for Al,
below we highlight some ideas in the HPC + Al space

= Steering of simulations

= Embedding simulation into ML methods

= Customized computational kernels

= Tuning applications parameters

= Generative models to compare with simulation

= Student (Al) Teacher (Sim) models =learned functions
» Guided search through parameter spaces

= Hybrid architectures HPC + Neuromorphic

= Many, many more
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Projection of Junction Tree autoencoder space
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Al at Argonne: Broad Span of Scientific Targets
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Example from Cancer Research
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Modeling Cancer Drug Response

Response

Drug Concentration in Log scale
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Performance

Why deep learning

Deep learning

Amount of data

olute error
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“Uno” Model Predictions with Dropout UQ (trained on ALMANAC)

All Samples colored by Sample ID
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Example from Traumatic Brain Injury
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Presenter
Presentation Notes
We are applying DL to all these tasks. 
DL segmentation improves generalizability and speed over traditional affine registration alignments.
The current Connectome pipeline bottleneck is also segmentation of the MRI. DL methods provide ~240x speedup over current Freesurfer approach.
GAN translation/super resolution viable for enhanced imaging and knowledge transfer/pretraining with cross-modal labels.


Training with diverse data modalities and
phenotypes
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Presenter
Presentation Notes
Infographic of some of the diverse brain data we have currently collected. Multiple terabytes and tens of thousands of patients.


Enhance CT imaging and exploit labels from other modalities

Generative Adversarial Networks

Labels to Street Scene Labels to Facade BW to Color



Presenter
Presentation Notes
Quick GAN visual intro


GAN Model trained on TBI patient data

Real CT Real MR



Presenter
Presentation Notes
Actual model trained with TBI patient MRI and CT paired volumes. 2d convolutional GAN. 3D architecture would improve the coherency between slices but requires many more computational resources.


.

Diverse brain disease MRI data for identifying abnormal CT

CNN Model trained on normal/abnormal MRI slices Knowledge transfer for CT

Normal CT
Normal MRI

Meningioma Glioma TBI Lesion/Midline Shift

Stroke Lesion

------
g


Presenter
Presentation Notes
CNN model was pretrained on MRIs from patients with visually identifiable tumor and stroke anomalies. Model then fine tuned with TBI CT images with no manual/ground truth lesion labels and tasked to predict slices with anomalies.


Building the Al Environment for Science



Al for Science Requires
New Research and Infrastructure

Applications

Learning systems

Foundations

lardware

Al applications across science and engineering. Transformative
approaches to simulation and experimental science.

Al software. Software infrastructure for managing data,
models, workflows etc., and for delivering Al capabilities
to 1,000s of scientists and engineers.

Mathematics, algorithms; general Al, reinforcement learning,
uncertainty quantification, explainability, etc.

Advanced hardware to support Al. Evaluation of new
architectures and systems; exploration of neuromorphic
and quantum as long term accelerators for Al.



Infrastructure for Al-enabled Science

Scientific instruments
Major user facilities
Laboratories
Automated labs

Sensors

Environmental

Laboratories bata
a . ingest

Mobile

Databases

Reference data
Experimental data
Computed properties
Scientific literature

Artificial Intelligence
Methods

Feature

enhancement selection

System Software

Resource
mgmt

gile
nfrastructur
ompute II

Operating
system

Model
creation

Authen/Access

training

(l Libraries

Runtime
system

HPO

Compilers

Workflow

Model Automation

reduction

Surrogates

Active/
reinforcement
learning

Simulation codes

Computational results
Function memoization

Industry, academia
New methods
Open source codes
Al accelerators

Scientists, engineers
Expert input
Goal setting




Infrastructure for Al-enabled Science

S Artificial Intelligence Simulation codes
Scientific instruments Methods Computational results

Major user facilities /| Function memoization

Laboratories DLHub

Automated labs System Software

Resource

creation

AutoMOMML -
Sensors VTO© nmaustry, academia

Environmental New methods

Laboratorssa Open source codes
Mobile RAEELLE

Al accelerators

Operating
Databases system DeepHyper

Reference data

Experimental data
Computed properties reduction
Scientific literature

Scientists, engineers
Surrogates Expert input
Goal setting

reinforcement

learning




DLHub: Organizing and Serving Models

https://www.dlhub.org

DLHub

Data and Learning Hub for Science
https://www.dlhub.org

= Collect, publish, categorize models

= Serve models via APl with access controls
to simplify sharing, consumption, and
access

= Leverage ALCF resources and prepare for
Exascale ML

= Deploy and scale automatically

= Provide citable DOI for reproducible
science

Argonne Advanced Computing LDRD

Models and Processing Logic as a Service

Describe

+ Specify the model files
+  Mark up the model with information to make
it discoverable and usable

» DLHub service creates unique

dl = DLHubClient()
dl.publish(m)

» Publish —— Discover

Register with DLHub for

B + Discover servables with advanced search
containerization as a servable

capabilities through Python SDK or web Ul

Run

+ Make predictions by sending data to DLHub
and specifying the servable to use

endpoint for servable

il = DLHubClient()
= dl.r "car 1", data)

X-Ray Science

from dlhub_sdk.client import DLHubClient

dl = DLHubClient()

.run("cherukara_structure”, X)

CDI Intensity

Predicted Structure
(via DLHub)

Cherukara et al.
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TomoGAN: Liu et al.
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Presentation Notes
Citations: 
[1] Liu, Zhengchun, Tekin Bicer, Rajkumar Kettimuthu, Doga Gursoy, Francesco De Carlo, and Ian Foster. "TomoGAN: Low-Dose X-Ray Tomography with Generative Adversarial Networks." arXiv preprint arXiv:1902.07582 (2019).
[2] Cherukara et al. “Real-time coherent diffraction inversion using deep generative networks”, 2018.
[3] Ward et al. "Machine Learning Prediction of Accurate Atomization Energies of Organic Molecules from Low-Fidelity Quantum Chemical Calculations” MRS Communications AI Special Issue (invited) – under review, 2019


CANDLE: Exascale Deep Learning Tools

Deep Learning Needs Exascale

<3

NVIDIA.

Automated model discovery
Hyper parameter optimization
Uncertainty quantification
Flexible ensembles
Cross-Study model transfer
Data augmentation

Synthetic data generation
Reinforcement learning

CRANY

\J

Data Preparation Training
| Batch Normalization | AR Iee
| DataAugmentation | e
| e ‘ = D_ — Ad_ t_ﬁ ...........
| Scaling/Quantization | osIn pospiETRY
| Concordance Processing | A
Cross-validation
Model Discovery Transfer Learning
l Residual Networks J ua
‘ Convolution ‘ g
: Factorial Design
[ Multitask Networks ‘
lPopulation Based HPOJ Learning Curves

B

Inference

Source — Target Pairs

Drug Combinations

Confidence Scoring

~ Outputs
Accuracy / K-rank / R?

Feature importance

Performance Analysis

https://github.com/ECP-CANDLE

P

EXASCAHLE
COMPUTING
PROJECT

Semi-supervised
learning, scalable data
analysis and agent
based simulations on

population scale data ‘I

—,

Treatment
Strategy

(f Pathway

Unsupervised learning
coupled with multi-scale
molecular simulations

/ RAS

augmented by stochastic
pathway modeling and
experimental design

4—/
Scope of CANDLE

Deep Learning

Drug
Response
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Future Directions in Foundations Ot=1 ot
------------------- h;_, ht.. ecoder
= | everage DOE expertise in automatic e g ] ’

differentiation, symbolic computing and optimization

to ensure that machine learning for science is
forward looking, methods are robust and models
Interpretable

= Many facets relevant to science

— Integration of symbolic computing with machine learning

— Prediction and inference of spatio-temporal processes

— Derivatives for training, sensitivity analysis, optimization,
and UQ

— Rapid data analysis to reduce volume or identify features of
Interest

— Variety of new approaches to inference and UQ

Row Encoder

— Identify and account for uncertainty in data sources “ Convolutional Network

and computations |
P X A\

SR WN
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Presentation Notes

NOTE:   This is a change from last year, whereby we had a capability focused on Data Analysis and Statistics.  We added Automatic Differentiation to this area and redefined it as Foundations of ML, Data Analysis and Statistics to include the Foundations of ML in this area.

Top 2 figs are from Ulvestead, Menickelly, Wild, AIP2018 and show recovered screw dislocations based on nano-scale Bragg coherent diffractive imaging data obtained at APS.

Bottom fig is from Hanqi Guo and shows uncertainty of flow field.


Aurora: HPC and Al

>> Exaops/s for Al

Argonne &

NATIONAL LABORATORY

Architecture supports three types of computing
» Large-scale Simulation (PDEs, traditional HPC)
» Data Intensive Applications (scalable science pipelines)

» Deep Learning and Emerging Science Al (training and inferencing)



Robust Learned Function Accelerators

Physics Code Al Engine ' DOE Infrastructure
: " {0
@l fa(model=‘ML1’, tor="A21") . ! @
def func(x): s UQ Engine |

Model Library

X,f) o

;Surrogate code generator

Data Storage

Inference Engine |

def 1fa_func(: g sl AL D) ¢

1fa = dThub.get_model(‘ML1") (X, f) - y Al Accelerators
if 1fa.is_supported(X):

y = Ifa.run(X) o )

else: Training Engine !

y = func(X) .

1fa_f.update(X, y) (X, y) - f i



Specialized hardware Is emerging that will be
10x — 100x the performance of
general purpose CPU and GPU designs for Al

VCs investing >$4B in startups
for Al acceleration

Which platforms will be good for science?
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Al Accelerator Testbed

Engaging the community to understand and improve specialized Al
hardware for science

Dozens of proposed Al accelerators promise

10x - 1000x acceleration for Al workloads. Al testbed will:

1. Provide an open and unbiased environment for
evaluation of Al accelerator technologies

2. Disseminate information about use cases, software,
performance on test problems

3. Support collaborations with Al technology developers,
academics, commercial Al, DOE labs

IC Intel, Qualcomm, Nvidia, Samsung, AMD, Xilinx, IBM, STMicroelectronics, NXP, Marvell, MediaTek,

- : 13 Staged evaluation enables identification
Vendors HiSilicon, Rockchip

of most promising systems for science

Tech
Giants & Google, Amazon_AWS, Microsoft, Apple, Aliyun, Alibaba Group, Tencent Cloud, Baidu, Baidu 19
HPC Cloud, HUAWEI Cloud, Fujitsu, Nokia, Facebook, HPE, Tesla
Vendors
- ARM, Synopsys, Imagination, CEVA, Cadence, VeriSilicon, Videantis 7
Vendars , SYnopsys, Imag ' ] ’ | ;
Startups Cambricon, Horizon Robotics, Bitmain, Chipintelli, Thinkforce, Unisound, AlSpeech, Rokid, 12

in China NextVPU, Canaan, Enflame, Eesay Tech

Cerebras, Wave Computing, Graphcore, PEZY, Tenstorrent, ThinCl, Koniku, Adapteva, Knowm, .
Mythic, Kalray, BrainChip, Almotive, DeepScale, Leepmind, Krtkl, NovuMind, REM, TERADEEP, DeVICe SUbraCk

Startups DEEP VISION, Grog, KAIST DNPU, Kneron, Esperanto Technologies, Gyrfalcon Technology,
Worldwide  SambaNova Systems, GreenWaves Technology, Lightelligence, Lightmatter, ThinkSilicon, Innogrit,
Kortig, Hailo, Tachyum, AlphalCs,Syntiant, Habana, aiCTX, Flex Logix, Preferred Network, Cornami,

Anaflash, Optaylsys, Eta Compute https://github.com/basicmi/Al-Chip




Argonne Is developing Al infrastructure

= Argonne is partnering with Cerebras to
develop and deploy an Al computing
platform

= Scientific Al models from Cancer,
cosmology, brain imaging and materials
science are the first examples that will be
deployed

= Our goal is to accelerate relevant Al model
types for problems in materials,
biomedical, cosmology, high-energy
physics, energy systems, synthetic
biology, climate, software optimization,
architecture research etc.

Cerebras Systemsis a stealth mode startup backed by premier venture capitalists and the

industry’s most successful technologists. We are entrepreneurs dedicated to solving héird

problems. We value integrity, passion, problem solving ability, and a sense of humor, and are
always looking for extraordindry people to join our team.

@erebras

CONCLUSION: FUTURE

< Massive multi-core engines that enable model parallelism

< Orders of magnitude greater memory and communication BW
< Unconstrained methods, e.g., large and small mini-batch

< Capture weight and activation sparsity for higher performance

< Support research and execution of emergent model architectures

(not just those of today)






autonomous molecular discovery system with
multiple feedback loops

Tanja Dimitrov, Christoph Kreisbeck, Jill S. Becker, Alan Aspuru-Guzik, and Semion K. Saikin
ACS Applied Materials & Interfaces Article ASAP
DOI: 10.1021/acsami.9b01226
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INTUITION =" | GENERATION B SYNTHESIS
S 5
L EXPERIMENT =
2 i > PLANNING . 5 \ 4
Z =
EXISTNG | ~_| COMPUTATIONAL A AUTOMATED
DATA MODELS TESTING

ADAPT PLANNING
GENERATE NEW LIBRARIES BASED ON THE FEEDBACK




The ATOM Platform

Active Learning Drug Discovery Framework

Working
Compound
Library

1

(

\.

Retrain property prediction

models

\

Efficacy

Machine Learning Pipeline

Multi-level | Systems

models models

Developability

bl

Generative

W Molecular Design

proposes new molecules with

optimized properties

olecular Featur
Simulations
Y

Simulation

Multi-Parameter
Optimization Loop

Design Criteria

\

Active learning

decides if/when a simulation or

~N

experiment is needed to improve

or validate models

J

r

Human-relevant
assays, complex
in vitro models

Chemistry
Design &
Synthesis

Experiment

ATOM

Jim Brase (LLNL) and the ATOM Consortium



Layered workflow combining Al, HPC and HTS

Filter
Candidates
ML

\ 4

ML Property Prediction Pipeline

UQ Scoring

Update ML
Models

A

ML Generator of Candidates

A 4

and
Optimization

A

Simulation: Estimation of Properties

A

A

Experiment: Estimation of Properties

A

Active
Learning

Pure ML “constant time” (fast loop)

Prioritization

Mixed/Variable time (slow loop)
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Come to a Townhall and tell us what you need!
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Chicago Al for Science Town Hall Denver Al for Science Town Hall San Francisco Al for Science Town Hall Washington DC Al for Science Town Hall
Argonne National Laboratory LOCATION Lawrence Berkeley National Laboratory LOCATION

July 22-23, 2019 August 20-21, 2019 September 11-12, 2019 October 22-23, 2019

To register for Chicago, click here Registration link here Registration link here Registration link here

DRAFT Agenda: Click here DRAFT Agenda: Click here DRAFT Agenda: Click here DRAFT Agenda: Click here
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