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DOE-NCI Partnership: Enable the most challenging deep 
learning problems in cancer research to run on the most 
capable supercomputers in the DOE

DOE-NCI
partnershipComputing 

advances for 
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pressing health 
issues of our 

Nation

Health and 
healthcare 

delivery challenges 
as a driver for 
US computing 

leadership
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DOE-NCI partnering entities
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AI to support national cancer surveillance
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Overarching Goal

• Short-Term:

• Deliver a scalable AI solution for large scale, near-real time information capture 

from unstructured clinical text with state-of-the-art clinical accuracy to semi-

automate the cancer surveillance program 

• Long-Term: 

• Scalable and precise phenotype information extraction to understand the effects of 

genetic and epigenetic changes on tumor behavior and responsiveness. 

• Critical Challenge:
• How to scale across 

• volumes and types of text documents, 

• information extraction tasks / phenotypes 

• cancer registries

6 6
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State-of-the-Art Approaches in Clinical NLP

• Current NLP thinking is TASK-specific

• Rule-based - effective but require intense domain expert involvement

• Task-specific dictionaries of phrases and medical terms

• Manual effort not easily scalable across tasks

• Traditional machine learning - scalable but require intense feature engineering

• N-gram based 

• Concept-extraction-based methods

• Deep Learning - scalable with enough compute power and enough data

• Does not require dictionaries, not susceptible to misspellings etc.

• Lots of new DL architectures proposed for NLP 

• No clear winner – depends on the global semantics required for the task at hand 
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Path NLP is an outstanding challenge  

8 8

Cancer surveillance programs 

deals with 70+ cancer sites and 

500+ histologies! 
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AI and HPC for clinical text understanding @ scale
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Cancer 

Phenotypes

• Site

• Histology

• Grade

• Behavior 

• Laterality 

• …..

70 cancer sites (306 subsites); 515 histologies; 9 grades; 7 lateralities; 4 behaviors 

>10,000 cancer phenotypes 

observed in based only on 

5 attributes

API

AI-driven NLP algorithmic innovation Scalability across pathology 

labs, SEER registries, & 

phenotypes Development & 

deployment of 

product

Extension to other NLP tasks to extract more data elements (e.g., biomarkers) will increase the number and 

complexity of cancer phenotypes observed – combinatorial explosion in computational cancer phenotyping

Supervised

Semisupervised

Unsupervised
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Methodology

• Two different implementations of a multi-

task convolutional neural network

• Hard-Parameter Sharing

• Cross-stitch

• Minimal pre-processing

• Simultaneous learning of 5 information 

extraction tasks: 

• site, histology, behavior, laterality, 

grade

• Gold standard: The variables coded in 

the registry abstract

• Benchmarking against traditional 

machine learning algorithms 

• Testing within and across SEER registries

10
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Louisiana Tumor Registry

• 2004-2018 

• 374,826 pathology documents

11 11

Kentucky Cancer Registry

• 2004-2018 

• 171,890 pathology documents
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Performance Metrics

• Precision = TP/(TP+FP)   

– Precision=PPV 

• Recall = TP / (TP+FN)
– Recall=Sensitivity

• F1 = (2xPre x Rec) / (Pre + Rec)

– A measure that combines both 
precision and recall

• Macro-Averaging

– Average all Pre/Rec/F1 values

– i.e., all classes are weighted equally

• Micro-Averaging

– Sum up classification decisions for each 
case

– Calculate Pre/Rec/F1 from the summations

– i.e., all cases are weighted equally
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2-fold Cross-Validation results

SVM: Support Vector Machine

RFC: Random Forest

CNN: Single-task
Convolutional Neural Network

MT-CNN (CS): Multi-task CNN 
(cross stitch)

MT-CNN (HP): Multi-task CNN 
(hard parameter sharing)
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API Deployment and Testing: across 11 SEER Registries / ~3M docs
micro-F1 scores

42.5% correctly classified across (S+H+B+L+G) 64.2% correctly classified across (S+H+B)

31.2% correctly classified across (SS+H+B+L+G) 45.3% correctly classified across (SS+H+B)
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Impact on Cancer Registry Workflow

• Mean time  for a registrar to code site, histology, behavior, grade, and 
laterality: 

– 55 seconds per clinical report

• Mean time for AI: 

– 12 milliseconds per report 

• Real-world testing on 10 cancer registries and ~600K pathology reports 
(2018):

– 4,048 hours for manual processing 

– 53 minutes with AI

• AI provides an opportunity for “real time” incidence reporting 

– goal to report at beginning of calendar year for prior calendar year (within 2-3 years)
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Newer NLP models, continuing to improve performance
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Preliminary Results
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Software Deployment via DOE’s CANDLE framework

• Cancer Distributed Learning Environment (CANDLE) Program

– An exscale deep learning environment for cancer research

– Building on open source Deep Learning frameworks

– Collaboration between DOE computing centers, HPC vendors and 
ECP co-design and software technology projects

• ECP-CANDLE GitHub: https://github.com/ECP-CANDLE

• ECP-CANDLE FTP Site: 
http://ftp.mcs.anl.gov/pub/candle/public/

https://github.com/ECP-CANDLE
http://ftp.mcs.anl.gov/pub/candle/public/
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Software release via JDACS4C IP Committee 
Repository

• Multi-Task Convolutional Neural Networks 

(https://github.com/CBIIT/jdacs4c-staging/tree/master/ORNL_MT-

CNN )

• PathRepHan (https://github.com/CBIIT/jdacs4c-

staging/tree/master/PathRepHAN )

https://github.com/CBIIT/jdacs4c-staging/tree/master/ORNL_MT-CNN
https://github.com/CBIIT/jdacs4c-staging/tree/master/PathRepHAN
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Conclusions & Next Steps

• Deep learning shows promise for automated information extraction from unstructured pathology reports 

to increase efficiency, data quality, and timeliness of cancer surveillance.

• MT-CNN performance exceeded that of traditional ML and single-task CNNs

• Our hard-parameter sharing MT-CNN is capable of scaling effectively across documents and information 

extraction tasks without additional computational or domain expert demands. 

• Cross-registry performance remained fairly robust across all tasks. 

• Other DL methods in the pipeline 

• Human-AI integration is an open-ended question

o What is the most effective way to integrate AI in national cancer surveillance? 

o Is interpretability possible and/or important?

o Case-level uncertainty quantification maybe helpful 
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Final Thoughts on AI for Health

• Hope
o The convergence of big data and AI will enable the accumulation and automation of functional 

knowledge in biomedicine

• Hype
o AI solutions are superior to collective intelligence of the experts

o Practical translation of AI tools is straightforward 

• Hard Truth
o Need for sustainable infrastructure to democratize AI innovation

o Need for scalable algorithms to support the continuum of scientific discovery and clinical application

o Human-AI integration approach will impact real-world value

o AI interpretability and (real-time) uncertainty quantification are important future directions

o Vulnerability issues for AI models and AI users (cognitive hacking) are critical
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THANK YOU!!!


