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Challenges in data science for
physical systems

How do we harness the
explosion of data to extract
knowledge, insight and
decisions?

When these guestions relate to
high-consequence decisions

INn engineering, science and medicine,
we need more than just the data —
we need to build in domain knowledge.




Example 1

Integrating MRI & ultrasound data with phase-field models
to create the first patient-specific prostate cancer model

Physics-based that capture the interplay
between prostate geometry & tumor progression

Computational Mechanics Group
T. Hughes



Example 2

Integrating multiple heterogeneous
data to infer ocean state &
parameters characterizing
large-scale climate model

complex interactions ¢ sparse &
expensive sensors ¢ multiphysics
multiscale dynamics ¢ data cannot
by themselves reveal key climate
Indices needed to issue
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Computational Research in Ice and Oceans Group
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Computational Hydraulics Group
C. Dawson

Example 3

Integrating multiple heterogeneous data
with circulation & transport modeling for
disaster response & preparedness

Billion-dollar decisions on where &
how to build coastal protection
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Predictive Data
Science

a convergence of Data Science
and Computational Science &
Engineering




Predictive
Data

Science

a convergence of
Data Science and CSE

Challenges

1 high-consequence applications are
characterized by complex multiscale
multiphysics dynamics

2 high (and even infinite) dimensional
parameters

3 data are relatively sparse and expensive
to acquire

4 uncertainty quantification in model
Inference and certified predictions in
regimes beyond training data



Predictive Data Science

Learning from data through the lens of models is a way
to exploit structure in an otherwise intractable problem.

Integrate
heterogeneous, noisy
& incomplete data

Embed domain
knowledge
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Get predictions with
quantified
uncertainties

Respect physical Bring interpretability
constraints to results




Learning from dynamical systems

data thrOugh uncertainty quantification
the lens of  Bayesian inference

models...

meshing methods

Inverse
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finite volumes
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What is a physics-based model?

pu p 1 conservation of
PDES:| d : Y 2 n 0 b= y—1 T Epw mass (p), momentum (pw),
1D Euler —\| ow — w —
'?' y dat : + 0z P P + boundary conditions & and energy (E)
equations E (E + p)W initial conditions for compressible flow

Discretize; discretized contains

Spatially discretized . mass, momentum and energy
computational fluid Ex = Ax + Bu + f(x, u) at N, spatial grid points

dynamic (CFD) model
N,~0(10* — 10°)

Solve: given initial I | |

state x(0) and input : x(t;): ith snapshot
= |x(¢t . X(T

u(t), compute state S (1) (tx) X: snapshot matrix

trajectory x(t) ] |
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What is a physics-based model?  umaliii

Example: modeling combustion in a rocket engine

Y

Conservation of mass (p), momentum (pw), energy g

(E), species (Ycu,, Yo, Yeo,» Yi,0) — 1:

Q, MW/m3

Ex = AX + Bu + f(x,u, p) N

» discretized contains reacting flow unknowns
p, pW, E,Ycn,, Yo,, Yco,, Yu,o discretized over computational domain

« u(t): forcing inputs
oscillation of inlet mass flow rate, stagnation temperature, back pressure, ...

« p: other parameters of interest:
fuel-to-oxidizer ratio, combustion zone length, fuel temperature, oxidizer temperature, ...
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The physical governing equations reveal variable transformations and
manipulations that expose polynomial structure



There are i<p‘;>+i<pw5u+p> o [ o5 +ust

. dt 0z P
E E 9 ow 10
multiple ways E-+p)w ()] ol o
; p
to write the po P 1 \ o 4w L
. Y — 1 2 X X
Euler equatlons conservative variables primitive variables
mass, momentum, energy mass, velocity, pressure
Different choices of  Define specific volume: q =1/,
variables leads to + Take derivative: 21 = =22 = = (—pZt—u) = 2t —u7t
different structure in the
disc_ret_ized system y g_z rq Z_Z Ex = Ax+Bu+Hx ®%)
— I |ft| N g i 1; N ou . ap | 0 linear quaa;atic
dt q Yp 0x “ dx transformed system
\ . ] has linear-quadratic structure
d0x 0x
cf. Ex = Ax + Bu + f(x, u, p)

specific volume variables "



1-Hl-B

dimension 106 — 10° dimension 10! — 103
solution time ~minutes / hours solution time ~seconds

|
+

Projection-based model reduction

1 . Solve PDEs to generate training data (snapshots)
2 . Compute a low-dimensional basis

3 . Project PDE model onto the low-dimensional subspace




Full-order model (FOM) B @S0 VN { (C'E B oL B 1!
state x € RV

Approximate
X ~ VX,
V E RNXT'

Residual: N egs >» r dof
r = EVx, — AVx, — H(Vx, ® Vx,) — Bu

Project

Wir=0

(Galerkin: W = V)
Reduced-order

model (ROM)
state x,, € R"

E.x, =AXx +H.(x; ®x,.) +B,u




Linear Model

FOM: Ex = Ax + Bu

ROM: E,.x, =A,x, +B,u

Precompute the ROM matrices:

s

A=VTAV, B=V'B,E=V'EV

Quadratic Model

FOM: Ex=Ax+HX & x) + Bu

ROM: E, x,, = A,x, + H. (X, ® x,.)) + B,u

Precompute the ROM matrices and tensor:

H=V HV®V)




(Some)
Large-Scale
Model Reduction
Methods

Different mathematical
foundations lead to
different ways to
compute the basis and
the reduced model

Overview in Benner, Gugercin &
Willcox, SIAM Review, 2015

Proper orthogonal decomposition (POD)

[Lumley, 1967; Sirovich, 1981; Berkooz, 1991; Deane et al. 1991,
Holmes et al. 1996]

— aka PCA, EOF, KLE, etc.

Krylov-subspace methods
[Gallivan, Grimme, & van Dooren, 1994; Feldmann & Freund, 1995; Grimme,
1997, Gugercin et al., 2008]

Balanced truncation
[Moore, 1981; Sorensen & Antoulas, 2002; Li & White, 2002]

Reduced basis methods
[Noor & Peters, 1980; Patera & Rozza, 2007]

Eigensystem realization algorithm (ERA) [Juang &
Pappa, 1985], Dynamic mode decomposition (DMD)
[Schmid, 2010], Loewner model reduction [mayo & Antoulas, 2007]



Machine learning Reduced-order modeling

“Machine learning is a field of computer “Model order reduction (MOR) is a
science that uses statistical techniques to give technique for reducing the computational
computer systems the ability to "learn” with complexity of mathematical models in
data, without being explicitly programmed.” numerical simulations.” [wikipedia]
[Wikipedia]

What Is the connection between reduced-order

modeling and machine learning?

Model reduction methods have grown from CSE, with a focus on reducing high-dimensional models
that arise from physics-based modeling, whereas machine learning has grown from CS, with a focus
on creating low-dimensional models from black-box data streams. Yet recent years have seen an

increased blending of the two perspectives and a recognition of the associated opportunities.
[Swischuk et al., Computers & Fluids, 2018]



Variable transformations to expose structure
learning structured ROMs from simulation snapshot data



Ex = Ax+Bu+ HxX ® xX)
S—— R —

Glven state

linear drati
data, learn Auacrate
the System Given state data (X) and velocity data (X):
- | | - |
In principle could learn a X=|x(t1) .. XxX(tg) X=|x(t1) .. X(tg)
large, sparse system | | | |

e.g., Schaeffer, Tran &
Ward, 2017

Find the operators A,B,E, H
by solving the least squares problem:

A%l,iEr,lHHXTAT +(XQ®X)'H" + U'BT — XTE||




Given reduced Ex = AX + Bu+ HX ® %)
state data,
learn the
reduced model Given reduced state data (X) and velocity data (X):
] I |
Operator Inference X=|%(t1) - X(tx)| X=|R(t) .. K(tg)

Peherstorfer & W.

Data-driven operator _ ~ A~
inference for nonintrusive Find the operators A, B,E, H

projection-based model by solving the least squares problem:
reduction, Computer Methods
In Applied Mechanics and

Engineering, 2016 ‘XTAT + (X ® X) HT T U'BT — XTEH

Eﬁ‘

=)
m>5




Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

: 1. Generate full state trajectories (snapshots)
Learning a (from high-fidelity simulation)
low-dimensional

model ] | O |
X =|x(t)) .. x(tg) X =|x(t)) .. x(tg)
| | | |

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD
reduced model




Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD
reduced model

Lift & Learn [gian, kramer, Peherstorfer & W., 2019]
1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)
2. Transform snapshot data to get lifted snapshots
(expose system polynomial structure)



Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD
reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots

3. Compute POD basis from lifted trajectories

X=VIW'



Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD
reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1.

Generate full state trajectories (snapshots)
(from high-fidelity simulation)

Transform snapshot data to get lifted snapshots
Compute POD basis from lifted trajectories

Project lifted trajectories onto POD basis, to
obtain trajectories in low-dimensional POD
coordinate space

X=VTX



Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]
1. Generate full state trajectories (snapshots)

Leaming a (from high-fidelity simulation)
low-dimensional 2. Transform snapshot data to get lifted snapshots
model 3. Compute POD basis from lifted trajectories

4. Project lifted trajectories onto POD basis, to
Using only snapshot obtain trajectories in low-dimensional POD
data from the coordinate space
high-fidelity model 5. Solve least squares minimization problem to
(non-intrusive) but infer the low-dimensional model

learning the POD
reduced model

HXTAT +(X®X) AT+ UTBT - XTE|

)
c:»E
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Learning a
low-dimensional
model

Using only snapshot

data from the
high-fidelity model
(non-intrusive) but
learning the POD
reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)
(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots

3. Compute POD basis from lifted trajectories

4. Project lifted trajectories onto POD basis, to
obtain trajectories in low-dimensional POD
coordinate space

5. Solve least squares minimization problem to infer
the low-dimensional model

Under certain conditions, recovers the intrusive POD
reduced model

— convenience of black-box learning +
rigor of projection-based reduction +
structure imposed by physics



1 Predictive Data Science

2 Concrete Example Roc ket En g | ne
Combustion

Lift & Learn reduced models for a
4 Conclusions & Outlook complex Air Force combustion problem

3 Application Example



Modeling a single injector
of a rocket engine
combustor

» Spatial domain discretized into 38,523 cells
* Pressure monitored at 4 locations

» Oxidizer input: 0.37 % of 42% 0, / 58% H,0

* Fuel input: 5.0 % of CH,
« Governing equations: conservation of mass,
momentum, energy, species

» Forced by a back pressure boundary condition
at exit throat

Monitor Location 1 Monitor Location 2

I
£2
L]
()
E
N
>

0.005 - Oxidizer—>

0. |
-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
X (meters)

Oxidizer
Manifold

llllllllllllllllllllll

(1]
S T e L L LI
.- -.‘ - | T
l ]I I(I ||| ||I |

qll &I;l tlll tii. llil llll EI!I IF | Injector

Element

- Injector Post

Combustion
Chamber

Exit Throat




0.025 -

0.02 -

Modeling a single injector of a rocket g

0.01 -

=
>

engine combustor i
 frsters
Training data Test data
« 1ms of full state solutions generated using Additional 1 ms of data at
Air Force GEMS code (~200 hours CPU time) monitor locations (10,000
 Timestep At = 10~’s; 10,000 total snapshots timesteps)

« Variables used for learning ROMs
x=[p u v 1/p Yeu, Yo, Yco, Yu,o]
makes many (but not all) terms in governing equations
guadratic

« Snapshot matrix X € R398184 % 10,000



Performance
of learned
quadratic
ROM

Pressure time traces at
monitor location 1

Basis sizer =17

Pressure

0.025

Monitor
0.02 location 1
)
E 0.015
O
£ 0.01
> 0.005
-0.06 -0.04 -0.02 0O 0.02 0.04 0.06 0.08 0.1
X (meters)
Training Test
x10°
134 -~ ROM, r=17
— TRUE
1.2
1.1+
1.0 +




Performance
of learned
quadratic
ROM

Pressure time traces at
monitor location 1

Basis sizer = 29

0.025
0.02
0.015
0.01
0.005

y (meters)

Monitor
location 1

-0.06 -0.04 -0.02 O 0.02 0.04 0.06 0.08 0.1

Training

X (meters)

Test

————— ROM, r=29
—— TRUE

1.2 -

Pressure

1.1+

1.0 1

0.015




Pressure Temperature
True P

Pa

1.26E+06
1.22E+06

1.18E+06
1.14E+06
11E+06

1.08E+06

Predicted

r = 29 POD modes

Pa

1.26E+06
1.22E+06
1.18E+06
1.14E+06
11E+06

1.06E+06

Relative error




True

Concentration

. 0.1

0.08
0.06

B 0.04
0.02
0

Predicted

r = 29 POD modes

Concentration ‘
Concentration
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Data Science

Computational
Science &
Engineering

Predictive
Data Science

Revolutionizing decision-making for
high-consequence applications in
science, engineering & medicine



Predictive |
Data Science |, redine - Rt iis

lens of models

Needs interdisciplinary

research & education Principled
. approximations Explicit modeling
at the interfaces that exploit & treatment of

low-dimensional uncertainty

structure



decisions

building the mathematical foundations and computational methods to
enable design of the next generation of engineered systems
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