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Challenges in data science for 

physical systems

How do we harness the 

explosion of data to extract 

knowledge, insight and 

decisions? 

When these questions relate to

high-consequence decisions

in engineering, science and medicine,

we need more than just the data —

we need to build in domain knowledge.



Computational Mechanics Group

T. Hughes

Example 1

Integrating MRI & ultrasound data with phase-field models 

to create the first patient-specific prostate cancer model

Physics-based predictions that capture the interplay 

between prostate geometry & tumor progression



Example 2

Integrating multiple heterogeneous 

data to infer ocean state & 

parameters characterizing

large-scale climate model

complex interactions •  sparse & 

expensive sensors  •  multiphysics

multiscale dynamics •  data cannot 

by themselves reveal key climate 

indices needed to issue predictions

Ocean	State	Estimation	-	combining	two	knowledge	reservoirs	
Observations	…	

How to synthesize? Estimation/optimal control problem: 
Use a model (MITgcm) and its adjoint: 

Argo T/P, Jason 

GRACE 

WOCE 

Ocean	State	Estimation	-	combining	two	knowledge	reservoirs	
Observations	…	

How to synthesize? Estimation/optimal control problem: 
Use a model (MITgcm) and its adjoint: 

Argo T/P, Jason 

GRACE 

WOCE 

Ocean	State	Estimation	-	combining	two	knowledge	reservoirs	
Observations	…	

How to synthesize? Estimation/optimal control problem: 
Use a model (MITgcm) and its adjoint: 

Argo T/P, Jason 

GRACE 

WOCE 

Ocean	State	Estimation	-	combining	two	knowledge	reservoirs	
Observations	…	

How to synthesize? Estimation/optimal control problem: 
Use a model (MITgcm) and its adjoint: 

Argo T/P, Jason 

GRACE 

WOCE 

Computational Research in Ice and Oceans Group

P. Heimbach



Example 3

Integrating multiple heterogeneous data 

with circulation & transport modeling for 

disaster response & preparedness

Billion-dollar decisions on where & 

how to build coastal protection

Computational Hydraulics Group

C. Dawson



Predictive Data 

Science

a convergence of Data Science 

and Computational Science & 

Engineering

“

”

**Computational Science & 

Engineering (CSE): an 

interdisciplinary field that 

uses mathematical modeling 

combined with advanced 

computing capabilities to 

understand and solve

complex problems

At its core CSE involves the 

development of models and 

simulations to understand

natural systems



Challenges

1 high-consequence applications are 

characterized by complex multiscale 

multiphysics dynamics

2 high (and even infinite) dimensional 

parameters

3 data are relatively sparse and expensive

to acquire

4 uncertainty quantification in model 

inference and certified predictions in 

regimes beyond training data

Predictive 

Data 

Science

a convergence of

Data Science and CSE



Predictive Data Science

Learning from data through the lens of models is a way 

to exploit structure in an otherwise intractable problem.

…

Respect physical 

constraints

Embed domain 

knowledge

Bring interpretability 

to results

Integrate 

heterogeneous, noisy 

& incomplete data

Get predictions with 

quantified 

uncertainties



Learning from 

data through 

the lens of 

models… 



Learning from 

data through 

the lens of 

models… 



Lift & Learn
Projection-based model reduction as a lens 

through which to learn predictive models

1 Predictive Data Science

2 Concrete Example

3 Application Example

4 Conclusions & Outlook



What is a physics-based model?

𝜕

𝜕𝑡

𝜌
𝜌𝑤
𝐸

+
𝜕

𝜕𝑧

𝜌𝑢

𝜌𝑤2 + 𝑝

𝐸 + 𝑝 𝑤
= 0

conservation of

mass (𝜌), momentum (𝜌𝑤),

and energy (𝐸)

for compressible flow

PDEs:

1D Euler 

equations

Discretize:

Spatially discretized 

computational fluid 

dynamic (CFD) model

discretized state 𝐱 contains 

mass, momentum and energy 

at 𝑁𝑧 spatial grid points
𝐱 =

𝜌1
𝜌𝑤1

𝐸1
𝜌2
𝜌𝑤2

⋮
𝜌𝑁𝑧
𝜌𝑤𝑁𝑧

𝐸𝑁𝑧

𝐄 ሶ𝐱 = 𝐀𝐱 + 𝐁𝐮 + 𝐟(𝐱, 𝐮)

Solve: given initial 

state 𝐱(0) and input 

𝐮 𝑡 , compute state 

trajectory 𝐱(𝑡)

𝑁𝑧~𝑂(10
4 − 106)

𝐗 =

| |
𝐱(𝑡1) ⋮ 𝐱(𝑡𝐾)

| |

𝐱 𝑡𝑖 :  𝑖th snapshot

𝐗:  snapshot matrix

𝐸 =
𝑝

𝛾 − 1
+
1

2
𝜌𝑤2

+ boundary conditions & 

initial conditions



What is a physics-based model?

Example: modeling combustion in a rocket engine

Conservation of mass (𝜌), momentum (𝜌𝑤), energy 

(𝐸), species (𝑌CH4
, 𝑌O2, 𝑌CO2, 𝑌H2O)

• discretized state 𝐱(𝑡) contains reacting flow unknowns

𝜌, 𝜌𝑤, 𝐸, 𝑌CH4
, 𝑌O2, 𝑌CO2, 𝑌H2O discretized over computational domain

• 𝐮(𝑡): forcing inputs

oscillation of inlet mass flow rate, stagnation temperature, back pressure, …

• 𝐩: other parameters of interest:

fuel-to-oxidizer ratio, combustion zone length, fuel temperature, oxidizer temperature, …

P, kPa

T, K

Q, MW/m3

YCH4

𝐄 ሶ𝐱 = 𝐀𝐱 + 𝐁𝐮 + 𝐟(𝐱, 𝐮, 𝐩)



Variable Transformations & Lifting
The physical governing equations reveal variable transformations and 
manipulations that expose polynomial structure
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𝜕

𝜕𝑡

𝜌
𝜌𝑢
𝐸

+
𝜕

𝜕𝑥

𝜌𝑢

𝜌𝑢2 + 𝑝

𝐸 + 𝑝 𝑢
= 0

𝐸 =
𝑝

𝛾 − 1
+
1

2
𝜌𝑢2𝜕

𝜕𝑡

𝜌
𝑢
𝑝

+

𝜌
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝜌

𝜕𝑥

𝑢
𝜕𝑢

𝜕𝑥
+
1

𝜌

𝜕𝑝

𝜕𝑥

𝛾𝑝
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑝

𝜕𝑥

= 0

𝜕

𝜕𝑡

𝑢
𝑝
𝑞

+

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑞

𝜕𝑝

𝜕𝑥

𝛾𝑝
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑝

𝜕𝑥

𝑞
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑞

𝜕𝑥

= 0



There are 
multiple ways
to write the
Euler equations

Different choices of 

variables leads to 

different structure in the 

discretized system

→ lifting

18

• Define specific volume:  𝑞 = Τ1 𝜌

• Take derivative:  
𝜕𝑞

𝜕𝑡
=

−1

𝜌2
𝜕𝜌

𝜕𝑡
=

−1

𝜌2
−𝜌

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝜌

𝜕𝑥
= 𝑞

𝜕𝑢

𝜕𝑥
− 𝑢

𝜕𝑞

𝜕𝑥

𝜕

𝜕𝑡

𝑢
𝑝
𝑞

+

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑞

𝜕𝑝

𝜕𝑥

𝛾𝑝
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑝

𝜕𝑥

𝑞
𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑞

𝜕𝑥

= 0

specific volume variables

transformed system

has linear-quadratic structure

𝜕

𝜕𝑡

𝜌
𝜌𝑤
𝐸

+
𝜕

𝜕𝑧

𝜌𝑢

𝜌𝑤2 + 𝑝

𝐸 + 𝑝 𝑤
= 0

𝐸 =
𝑝

𝛾 − 1
+
1

2
𝜌𝑤2

𝜕

𝜕𝑡

𝜌
𝑤
𝑝

+

𝜌
𝜕𝑤

𝜕𝑥
+ 𝑢

𝜕𝜌

𝜕𝑥

𝑤
𝜕𝑤

𝜕𝑥
+
1

𝜌

𝜕𝑝

𝜕𝑥

𝛾𝑝
𝜕𝑤

𝜕𝑥
+ 𝑤

𝜕𝑝

𝜕𝑥

= 0

conservative variables

mass, momentum, energy

primitive variables

mass, velocity, pressure

cf. 𝐄 ሶ𝐱 = 𝐀𝐱 + 𝐁𝐮 + 𝐟(𝐱, 𝐮, 𝐩)



Projection-based model reduction

1 Train: Solve PDEs to generate training data (snapshots)

2 Identify structure: Compute a low-dimensional basis

3 Reduce: Project PDE model onto the low-dimensional subspace

= +

dimension 106 − 109

solution time ~minutes / hours

dimension 101 − 103

solution time ~seconds

+=



Reduced 
models

1 Train

2 Identify structure

3 Reduce

𝐄 ሶ𝐱 = 𝐀𝐱 + 𝐇 𝐱⊗ 𝐱 + 𝐁𝐮

Approximate
𝐱 ≈ 𝐕𝐱𝑟
𝑉 ∈ ℝ𝑁×𝑟

𝐫 = 𝐄𝐕 ሶ𝐱𝑟 − 𝐀𝐕𝐱𝑟 −𝐇 𝐕𝐱𝑟 ⊗𝐕𝐱𝑟 − 𝐁𝐮

Project
𝐖⊤𝐫 = 0
(Galerkin: 𝐖 = 𝐕)

Residual: 𝑵 eqs ≫ 𝒓 dof

Full-order model (FOM)

state 𝐱 ∈ ℝ𝑁

Reduced-order 

model (ROM)

state 𝐱𝑟 ∈ ℝ𝑟 𝐄𝑟 ሶ𝐱𝑟 = 𝐀𝑟𝐱𝑟 +𝐇𝑟 𝐱𝑟 ⊗𝐱𝑟 + 𝐁𝑟𝐮

𝐀𝑟 = 𝐕⊤𝐀𝐕

𝐄𝑟 = 𝐕⊤𝐄𝐕

𝐁𝑟 = 𝐕⊤𝐁

𝐇𝑟 = 𝐕⊤𝐇(𝐕⊗ 𝐕)



Linear Model
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FOM: 

ROM: ROM: 

FOM: 

Precompute the ROM matrices: Precompute the ROM matrices and tensor:

Quadratic Model

𝐄𝑟 ሶ𝐱𝑟 = 𝐀𝑟𝐱𝑟 + 𝐁𝑟𝐮 𝐄𝑟 ሶ𝐱𝑟 = 𝐀𝑟𝐱𝑟 +𝐇𝑟 𝐱𝑟 ⊗𝐱𝑟 + 𝐁𝑟𝐮

𝐄 ሶ𝐱 = 𝐀𝐱 + 𝐇 𝐱⊗ 𝐱 + 𝐁𝐮𝐄 ሶ𝐱 = 𝐀𝐱 + 𝐁𝐮

projection preserves structure  ↔ structure embeds physical constraints



(Some)
Large-Scale 
Model Reduction 
Methods

Different mathematical 

foundations lead to 

different ways to 

compute the basis and 

the reduced model

Overview in Benner, Gugercin & 

Willcox, SIAM Review, 2015

• Proper orthogonal decomposition (POD) 
[Lumley, 1967; Sirovich, 1981; Berkooz, 1991; Deane et al. 1991;

Holmes et al. 1996]

– aka PCA, EOF, KLE, etc.

• Krylov-subspace methods
[Gallivan, Grimme, & van Dooren, 1994; Feldmann & Freund, 1995; Grimme, 

1997, Gugercin et al., 2008]

• Balanced truncation 
[Moore, 1981; Sorensen & Antoulas, 2002; Li & White, 2002]

• Reduced basis methods
[Noor & Peters, 1980; Patera & Rozza, 2007]

• Eigensystem realization algorithm (ERA) [Juang & 

Pappa, 1985], Dynamic mode decomposition (DMD) 

[Schmid, 2010], Loewner model reduction [Mayo & Antoulas, 2007]



What is the connection between reduced-order 
modeling and machine learning?

Machine learning

“Machine learning is a field of computer 

science that uses statistical techniques to give 

computer systems the ability to "learn" with 

data, without being explicitly programmed.” 
[Wikipedia]

Reduced-order modeling

“Model order reduction (MOR) is a

technique for reducing the computational 

complexity of mathematical models in 

numerical simulations.” [Wikipedia]

Model reduction methods have grown from CSE, with a focus on reducing high-dimensional models

that arise from physics-based modeling, whereas machine learning has grown from CS, with a focus 

on creating low-dimensional models from black-box data streams. Yet recent years have seen an 

increased blending of the two perspectives and a recognition of the associated opportunities.

[Swischuk et al., Computers & Fluids, 2018]



Lift & Learn
Variable transformations to expose structure

+ learning structured ROMs from simulation snapshot data

24



Given state 
data, learn 
the system

In principle could learn a 

large, sparse system

e.g., Schaeffer, Tran & 

Ward, 2017

min
𝐀,𝐁,𝐄,𝐇

𝐗⊤𝐀⊤ + 𝐗⊗ 𝐗 ⊤𝐇⊤ + 𝐔⊤𝐁⊤ − ሶ𝐗⊤𝐄

𝐗 =

| |
𝐱(𝑡1) … 𝐱(𝑡𝐾)

| |

ሶ𝐗 =

| |
ሶ𝐱(𝑡1) … ሶ𝐱(𝑡𝐾)

| |

Given state data (𝐗) and velocity data ( ሶ𝐗):

Find the operators 𝐀,𝐁, 𝐄, 𝐇
by solving the least squares problem:



Given reduced
state data,
learn the
reduced model

Operator Inference

Peherstorfer & W.

Data-driven operator 

inference for nonintrusive 

projection-based model 

reduction, Computer Methods 

in Applied Mechanics and 

Engineering, 2016

෡𝐗 =

| |
ො𝐱(𝑡1) … ො𝐱(𝑡𝐾)

| |

ሶ෡𝐗 =

| |
ሶො𝐱(𝑡1) … ሶො𝐱(𝑡𝐾)

| |

Given reduced state data (෡𝐗) and velocity data ( ሶ෡𝐗):

Find the operators ෡𝐀, ෡𝐁, ෠𝐄, ෡𝐇
by solving the least squares problem:

min
෡𝐀,෡𝐁, ෠𝐄,෡𝐇

෡𝐗⊤෡𝐀⊤ + ෡𝐗⊗ ෡𝐗
⊤෡𝐇⊤ + 𝐔⊤෡𝐁⊤ − ሶ෡𝐗⊤ ෠𝐄



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

𝐗 =

| |
𝐱(𝑡1) … 𝐱(𝑡𝐾)

| |

ሶ𝐗 =

| |
ሶ𝐱(𝑡1) … ሶ𝐱(𝑡𝐾)

| |

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)

(from high-fidelity simulation)



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)

(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots

(expose system polynomial structure)



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

𝐗 = 𝐕 𝚺𝐖⊤

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)

(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots

3. Compute POD basis from lifted trajectories



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

෡𝐗 = 𝐕⊤𝐗

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)

(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots

3. Compute POD basis from lifted trajectories

4. Project lifted trajectories onto POD basis, to 

obtain trajectories in low-dimensional POD 

coordinate space



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

min
෡𝐀,෡𝐁, ෠𝐄,෡𝐇

෡𝐗⊤෡𝐀⊤ + ෡𝐗⊗ ෡𝐗
⊤෡𝐇⊤ + 𝐔⊤෡𝐁⊤ − ሶ෡𝐗⊤ ෠𝐄

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)

(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots

3. Compute POD basis from lifted trajectories

4. Project lifted trajectories onto POD basis, to 

obtain trajectories in low-dimensional POD 

coordinate space

5. Solve least squares minimization problem to 

infer the low-dimensional model



Learning a
low-dimensional 
model

Using only snapshot 
data from the
high-fidelity model 
(non-intrusive) but 
learning the POD 
reduced model

Lift & Learn [Qian, Kramer, Peherstorfer & W., 2019]

1. Generate full state trajectories (snapshots)

(from high-fidelity simulation)

2. Transform snapshot data to get lifted snapshots

3. Compute POD basis from lifted trajectories

4. Project lifted trajectories onto POD basis, to 

obtain trajectories in low-dimensional POD 

coordinate space

5. Solve least squares minimization problem to infer 

the low-dimensional model

Under certain conditions, recovers the intrusive POD 

reduced model

→ convenience of black-box learning +
rigor of projection-based reduction +

structure imposed by physics



Rocket Engine 
Combustion 
Lift & Learn reduced models for a 

complex Air Force combustion problem

1 Predictive Data Science

2 Concrete Example

3 Application Example

4 Conclusions & Outlook



Modeling a single injector 
of a rocket engine 
combustor

• Spatial domain discretized into 38,523 cells

• Pressure monitored at 4 locations

• Oxidizer input: 0.37 
kg

s
of 42% O2 / 58% H2O

• Fuel input: 5.0 
kg

s
of CH4

• Governing equations: conservation of mass, 

momentum, energy, species

• Forced by a back pressure boundary condition 

at exit throat

Injector 

Element

Injector Post

Oxidizer 

Manifold

Combustion 

Chamber

Exit Throat



Modeling a single injector of a rocket 
engine combustor

Training data

• 1ms of full state solutions generated using

Air Force GEMS code (~200 hours CPU time)

• Timestep Δ𝑡 = 10−7s; 10,000 total snapshots

• Variables used for learning ROMs

𝐱 = 𝐩 𝐮 𝐯 𝟏/𝝆 𝐘𝐂𝐇𝟒 𝐘𝐎𝟐 𝐘𝐂𝐎𝟐 𝐘𝐇𝟐𝐎
makes many (but not all) terms in governing equations 

quadratic

• Snapshot matrix 𝐗 ∈ ℝ308,184 × 10,000

Test data

Additional 1 ms of data at 

monitor locations (10,000 

timesteps)



Performance
of learned 
quadratic 
ROM

Pressure time traces at 

monitor location 1

Basis size 𝒓 = 𝟏𝟕

36
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Performance
of learned 
quadratic 
ROM

Pressure time traces at 

monitor location 1

Basis size 𝒓 = 𝟐𝟗
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True

Predicted
𝑟 = 29 POD modes

Relative error

Pressure Temperature
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True

Normalized absolute error

CH4 O2

Predicted
𝑟 = 29 POD modes



Conclusions & 
Outlook
The future of Predictive Data Science

1 Predictive Data Science

2 Concrete Example

3 Application Example

4 Conclusions & Outlook



Predictive 

Data Science

Revolutionizing decision-making for 

high-consequence applications in

science, engineering & medicine

Data Science

Computational 

Science & 

Engineering



Predictive 

Data Science

Needs interdisciplinary

research & education

at the interfaces

Embedding 
domain knowledge

Learning from 

data through the 

lens of models

Principled 

approximations 

that exploit

low-dimensional 

structure

Explicit modeling 

& treatment of 
uncertainty

1

3

2

4



Data-driven decisions

building the mathematical foundations and computational methods to 

enable design of the next generation of engineered systems

K I W I . O D E N . U T E X A S . E D U


