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Motivation and Background

Multi fracture sizes in geomechanics
(multiple length & time scales)
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Motivation and Background

Surrogate models of constitutive behaviors across multiple length scales

Online DEM-FEM-FEM multiscale simulation Offline RNN-FEM simulation

Meso-scale assumed strain
embedded strong discontinuity
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Surrogate models for upscaling can be theory-based models with hand-
crafted mathematical expressions, or data-driven models with neural
networks (as universal function approximators) learning from data.

[Wang & Sun, 2018]
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Examples of Material Laws
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Timeline of Scientific discovery in geomechanics constitutive models

Accelerate scientific discovery using machine learning

Knowledge graph

Mohr-Coulomb

from domain
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Discover new mechanisms

Machine Learning on knowledge graphs:

Nickel, Maximilian et al. (2015),

Battaglia, Peter W., et al. (2018), ...

dg COLUMBIA ENGINEERING

5 | Meta-modeling of Multi-scale Geomaterials with Deep Learning



Why machine learning for constitutive modeling?

Key Idea: Use DRL to generate knowledge graph
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Scientific machine learning for constitutive modeling process

Machine Learning focusing on internal properties

Why?

 Machine learning is often being used as a black box and people need to develop trust
for it. (Geotechnical engineering problems are high-regret & safety-critical)

* Small data (geomechanics experiments) versus Big data (Image Recognition)

e Leveraging domain knowledge and constraints in ML formulations

Black box ANN — designed to
replicate external behaviors
without caring internal properties
(e.g. thermodynamics...etc)

Traction

Porosity tn,m

) Coordination
/ \\number
0O >0,
'\/ Fabric tensor
Displacement jump

>t

Graph-based predictions — designed to
generate knowledge represented by
directed graph with the same internal
properties of human thinkers.
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Analogy of Constitutive Modeling to Games

Chess Game Go Game Meta-modeling Game
EAsdvEaE Traction
A AR P

Porosity n,m
Coordination
number
L W o BE o BW o el 5*6n9m CNAf
= Z = 7 ﬁ _ Z E Displacement jump Fabric tensor

Move pieces to Place pieces to Connect edges to generate
put the opponent's control more territory optimal internal information
king in "checkmate" than your opponent flow of constitutive models

2
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Superhuman Performance of Al in learning the strategies of games
3 hours 19 hours 70 hours
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Graph representation of knowledge

Representation of mechanics knowledge in graphs, directed Graph and directed multi-graph

e \Vertices - a measurable physical properties p Ar Py
(permeability, thermal conductivity, force, 4
displacement, strain..etc)
0 —O0um [0} d, Lam—— QL
e Directed Edges — a existing hiearcheircal relationship
C Pg

between two vertices

e Edge Labels — the specific model used to connect
two physical vertices. The model can be
mathematical, neural network, support vector
machine ...etc

e Directed graph — the combinatorial optimized
configuration of the vertices connected by edges,
each with one unique labels.

e Label Directed Multi-graph — all the possible way the
vertices are connected by different combination of 55
edges with different labels )

JF Sowa, Conceptual Graphs for a Data Base Interface, IBM J. RES. DEVELOP., 1976
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Leverage hand-crafted models to expand multi-graphs

Use directed multi-graph to represent possible theories and models (Graph representation
of knowledge) — Worst case scenario — we recover the best hand-crafted model but we
won’t generate any new model that performs worse than existing state-of-the-art.

Example: traction-separation models
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Ty = fS™(g/f, Ay), T \\ Directed multi-graph that contains all
T, = B5™M(gf A, (860 - @) - actions ofthree previous modelers |
‘ ey recorded in Tvergaard, 1990, Pandolfi et
1. & d al, 1990 and Wang & Sun [2018]
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Find optimal directed graph for a constitutive model from directed

multi-graph

Formalization of the meta-modeling game in graph theory

Possible configurations of constitutive laws as a labeled directed multi-graph. Given a data set
which measures a set of physical quantities defined as V with a corresponding set of labels Ly where
ny : V — LLg is a bijective mapping that maps the vertices to the labels. Let Vg C Vand V) C V
be the root and leave of the directed multi-graph. All possible ways to write constitutive laws that
map the input Vi (e.g. strain history) to output V; (e.g. stress) as information flow can be defined by
the sets of edges where each edge that links two physical quantities [E, the mappings s : E — V and
t : IE — V that provide the direction of the information flow, and the surjective mapping ng : E — LLg
that assigns the edge labels (names) to the edges.

Instants of constitutive laws as direct-graphs. Given a dataset that contains the time history in-
formation of n types of data labeled by [; € ILy and the labeled direct graph defined by the 8-tuple
G = (Lv,Lg, V,E, s, t,ny,np), and objective function SCORE and constraints to enforce universal
principles. Find an subgraph G’ of G consists of vertices V € V° C V and edges E € E° C E such
that 1) G’ is a directed acyclic graph, 2) a score metric is maximized under a set of m constraints
filly, o, ..., In) =0,i=1,...,m where, ie,

maximize SCORE(ly,1l,,..., 1)
" (17)
subjectto  fi(i;) =0,1=1,...,m.

&5 COLUMBIA | ENGINEERING
TN The FuF

13 | Meta-modeling of Multi-scale Geomaterials with Deep Learning B Tt o Aot S



Meta-modeling game for feature extraction and constitutive models

Key ingredients of a game

'6..-‘i-’l...-‘ t Agent A::‘h‘ C
o e . (the reinforcement ) @ +Up)(5:a)
Ly algorithm) maX\‘
State ‘o & o o
(the traction-separation Rewa rd *— o
model generated via (Score of the model based on ACtI on

the decision tree) accuracy, speed, consistent

and robustness) (modeling choices, e.g.

selection of state variables,

mathematical expression vs.
neural network, types of neural

network for each edge..etc)

Environment .’

(the validation procedure
with constraints )

e LSTM Prodiction
G900 0001 0002 0.003  0.004  0.005
Us [m]

Environment Idealized multigraph for constitutive models validated against unseen data
Agent Human or Al

State s The generated constitutive laws

Action a The decisions that lead to the generation of constitutive laws

Reward r Score (objective function) of the constitutive model

v(s) Expected model score of state s

Q-value Q(s,a) | Expected model score from taking action a at state s

(s, a) Probability of taking action « at state s
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Game Environment

Data Generation: Computational homogenization of traction-separation law for

strong discontinuity

(a) RVE of frictional surface
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Game Environment

Internal properties (nodes of the directed graphs) may include porosity,
coordination number, fabric tensor, and quantitative measures of the graph of
grain contact connectivity (e.g., average shortest path, graph density)
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Possible configurations of constitutive laws as a labeled directed multi-graph. Given a data set
which measures a set of physical quantities defined as V with a corresponding set of labels Ly where
ny : V — LLg is a bijective mapping that maps the vertices to the labels. Let Vg C Vand V) C V
be the root and leave of the directed multi-graph. All possible ways to write constitutive laws that
map the input Vi (e.g. strain history) to output V; (e.g. stress) as information flow can be defined by
the sets of edges where each edge that links two physical quantities [E, the mappings s : E — V and
t : IE — V that provide the direction of the information flow, and the surjective mapping ng : E — LLg
that assigns the edge labels (names) to the edges.

Example game

Ay
Ay CN
d _"_én,m ¢ da Iyn—™
Ct Pe
!sp
(a) Initial configuration of the “game board” (b) All possible actions on the “game board”
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Game Action Choices (Example): Neural network models for

connecting information flow

[J Ghaboussi et al. 1991]
-yt [M Lefik and BA Schrefler. 2003]

Multilayer perceptron

Treating path-dependent
behavior is non-trivial

[Zhu JH et al. 1998]

Recurrent neural networks
* Capable of memorizing

deformation history

®) (h)
o <u S S
& & &

Long-short term memory

* Gradient vanishes in long

v

v

v

@—>—@

tferm memory

This work
® ® 6? * Overcoming gradient
( Lle o T , vanishing or exploding
A ; BE» A E issues
Al 7 ) * Circumventing over-fitting
é © é with dropout layers

The repeating module in an LSTM contains four interacting layers.

http://colah.github.io /posts/2015-08-Understanding-LSTMs /
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Game Rules: Mechanics Principles (e.g., material frame indifference)

95000 85000
90000+
85000 80000
_™ /ML w/ tensor components  \yf-ea | ML w/ invariant and so(3)
75000 . ! A ©
n% (cf. Ghaboussi et al, 1998) —Y Lo ?4 (cf. Wang & Sun, 2018)
t:-;. 70000 ! ) \_ e
65000 i »
X
60000 70000
55000 @=¢ Result in rotated frame | ®—e Result in rotated frame
e—e Target *—e Target
5000{5’.00 0.01 0.02 0.03 0.04 0.05 6500(900 001 0.2 0,03 0,04 5,05
€33 ) ) . . €33
Tensor component as input lead to lack of Tensor invariant as input lead to lack of

objectivity (prediction depends on observer)  objectivity (prediction independent of observer)

o " €11
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Game Reward: Objective function with calibration/validation

Merit n pfm

SCORE = HA“’“ Z v APT™), )

. . . . fm Mg . .
where w; € [0,1] is the weight associated with the measure AF , and Zi.i{“ w; = 1. In this section, two
examples of measures of accuracy A,ccuracy and prediction consistency A gnsistency are presented.

(—-—| Training data L—-—} — All Data YA
teration 1 -0 00000 00000000000000 — $221nf)l';gtaData /%

020000099900000000000
ooooooooomooooo

m_> oooooooooooooo
€ All data '— >

eCDF

log[max(epy, €crit)] 0)

Aaccuracy = max( log e
-crit

0, p-value <wgqy,

(i
Aconsistency = H"sof =
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Modeling procedure of meta-modeling: Markov decision process

Initial state s, State 54 State s,
[0,0,0,0,0,0,0,0,0,0,0,0,0] [0,1,0,0,0,0,0,0,0,0,0,0.0] [0,1,0,0,0,0,1,0,0,0,0,0,0]
U Ly = & - Tuw ™08
Action ag = 1 Action ay = 6 Action a; =7
¢ —_— ¢ —_— @ —_—
& = CN Ay & =G CN & b = CN Ay
Reward ry Reward ry
Legal moves Legal moves Legal moves
[1,1,1,1,1,1,1,1,1,1,1,1,1] [1,0,1,1,1,1,1,1,1,1,1,1,1] [1,0,1,1,1,1,0,1,1,1,1,1,1]
State s5 State s, Fnal state s¢
[0,1,0,0,0,0,1,1,0,0,0,0,0] [0,1,0,0,0,0,1,1,0,0,0,0,1] [0,1,0,0,0,01,1,1,0,0,0,1]
- e - e | - P
Action az = 12 Action a, = 8
& —_— & ‘ —_— ‘
§ =l _ b CN Ay & =8, - - CN Ay & =y - > CN = A
Reward 1y Reward ry Reward
Legal moves Legal moves from model score
[1,0,1,1,0,1,0,0,1,1,1,1,1] [1,0,1,1,0,1,00,1,1,1,1,0]

A gameplay example formalized as a Markov decision process
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Game Playing: Improvement of predictions through self-playing

State s,

Initial state s Final state sp

Action Action Action  Action
e ao~Ty Ay 1~T 4 / o a;~T; QAr_1~TMp_q / g
Self-play ¢ () /(b
& ~Onin CN 4 5 +6,,,,,,—>>CN Ay 5 Ol N- A,

|

" Action selected according Model score

I to policy probabilities & Game reward
i

i

I

I

I

| Train
v v

Policy probability T,
Value position v v,

\ Predict policy/value — A ST S

Adapted from AlphaGo Zero
[D Silver et al., 2017]

Monte Carlo Tree Searches

A (deep) neural network fy with parameters 6 (weights, bias, ... of the artificial neurons) takes in the
current configuration of the directed graph of the constitutive law s and outputs a policy vector p with
each component p; = p(s,a) representing the probability of taking the action a from state s, as well as a
scaler v estimating the expected score of the constitutive law game from state s, i.e,,

(p,v) = fo(s).

These outputs from the policy /value network guide the game play from the Al agent.
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Game Playing: Monte Carlo Tree Search

6 O0p— CN dy

(Q+ UQ)(smthJ<:s,fz’J

5 ~Op——CN d)

Expansion and evaluation

Neural network

[p(s'.), v(s")] = fo(s) 6 =0, CN dy

8 ~Sum = CN Ay

6 *6'1’"14.;CN Af

Back propagation

6 =i CN Af

/‘N,a’)

) 4‘5,,_,,,4’—CN A_f 6*(5,,‘,"4’—CN Af

v(s): Value of state s of each
edge

p(s, a): Probability of taking
action g at state s

Q(s, a): Value of taking
action g at state s

Uq (s, a): Estmated upper
bound of Q(s, a) of taking
action g at state s
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Two agents to play the meta-modeling game collaboratively

Experimentalist Agent
Game board: All experiment choices: (uniaxial, biaxial, simple shear, ...)
* Game actions: choose the tests to be conducted for model calibrations
e Game goal:
1. Maximize the final model score (global goal, need to be checked by the
subsequent Model Game)
2. Minimize the total number of tests (local goal)

L J 1 Top Cap ‘ Vertical Stressl Brass Rings
— =
2
Shear Stress
UNIAXIAL TRIAXIAL Base Pedestal

Modeler Agent (identical to the previous single agent)
* Game board: All modeling choices: (mathematical, ANN, ...)
* Game actions: choose the modeling edges to connect the physical quantities
* Game goal:
1. Maximize the final model score

&5 COLUMBIA | ENGINEERING
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Two-agent game: data collections and meta-modeling

Data
Modeler transfer | Experimentalist
Agent Agent
State Action Action
(the constitutive model (writing constitutive (conducting State
generatedvia the laws on directed experiments) Experimental campaign
decision tree) graph) (e.g. loading path, types

of test, cost..etc)

Reward Environment,’ I Reward
(Score of the model based on (the validation procedure ~
accuracy, speed, consistent with constraints ) 0 (Improvement of prediction
and robustness) 7 st capability due to additional
ol Q I'l::l'-.\.::lll-'l:.! 0.0 0,005 data]

e Both the modeler and the experimentalist has a common goal of replicating the physics as
close as possible.

* The experimentalist also has its local goal of minimizing the experiments but needs to
work collaboratively with the modeler to achieve the common goal.

* Multi-agent Multi-objective Deep-Q-learning creates Al to play the Data and Model
games and learn from repeating generating models automatically
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Markov decision process for data collection and meta-modeling

Experimentalist Agent

.. Action Action Action .

Initial state s, a, = T3 State s a, = T5 State s, a, = T8 Final state s3
Set of experiments Set of experiments Set of experiments Set of experiments
[T1] I [T1, T3] I [T1, T3, T5] [T1, T3, T5,T8]

Reward r; Reward r, Reward 75

Modeler Agent (identical to the previous single agent)

Initial state s State 54 State 5,
[0,0,0,0,0,0,0,0,0,0,0,0,0] [0,1,0,0,0,0,0,0,0,0,0,0.0 [0,1,0,0,0,0,1,0,0,0,0,0,0]
i o~ - iy
Action ag = 1 Actiom a; = 6 Actiom a; =7
¢ _— ) @ —_—
Construct o-® o et - N b
- - Reward ry Reward ry
Cal | bratlon Legal moves Legal moves Legal moves
data (1,1,1,1,1,1,1,1,1,1,1,1,1] [1,0,1,1,1,1,1,1,1,1,1,1,1] (10,1,1,1,1,0,1,1,1,1,1,1]
State s State s, Fmal state sg
[0,1,0,0,0,0,1,1,0,0,0,0,0] [0,1,0,0,0,0,1,1,0,0,0,0,1] [0,1,0,0,0,0,1,1,1,0,0,0,1]
- i~ - @ - fom =
Action az = 12 Action ay = B
o —_— & o —_— o o
P e— P — &GN
Reward ry Reward Reward rg G I Obal
from model score R d
Legal moves Legal moves ewar
[1,0,1,1,0,1,0,0,1,1,1,1,1] [1,0,1,1,0,1,0,0,1,1,1,1,0]

OLUMBIA ‘ ENGINEERING
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Self-play reinforcement learning of Data Agent and Model Agent

Data Agent
Initial state s Action Action State s, Action  Action Final state s¢
Qp~Ty Ap1~Ty Qp~Ty  Ap_1~Tr
Self-play [T1] [T1, T3, T5] [T, T3, TS, T8]

i i
i i Action selected accordin ] score
! Monte Carlo Tree Searches ! . s € Model score
; I to policy probabilities & Game reward
I I
i i Train 1
v v

Policy probability , [ -

Value position v v,

\

Predict policy/value

__-—-—""'--’_

Generate data for model calibration

Model Agent
Initial state s State s,
L) - s Action Action® - L
\ ~/9-® @-- ay~T, Ay 1~Tpay . :g. D ©--
Self—p]“ya-—in—t - r L L Pt AL | L R i S
S 4 ™
W 8
~ oA ~ oA
! Monte Carlo Tree Searches !
1 1
i i
1 1
v v
Policy probability m, ™,
Value position v v

\

Predict policy/value

Final state sp

Action  Action &

Qp~Ty  Qp_~Tlp_y .

AL ATy -

Action selected according
to policy probabilities

/
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What could be the applications of
the meta-modeling approach?
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Example 1: Learning traction-separation models from DEM simulations

Game board
Ay
Ay CN
d _"_én,m [ da Iygn™ 1
Ct Pe
lsp
(a) Initial configuration of the “game board” (b) All possible actions on the “game board”
Material: DEM

Graph nodes of internal features: porosity, coordination number, fabric tensor, strong fabric
tensor, degree assortativity, transitivity coefficient, average shortest path length, density of
the graph

Prescribed displacement jump
8, ’ﬁ_m

Graph edge choices: LSTM neural networks

Periodic g
BC 4@

Parameters of DRL: number of Iterations = 10
number of episodes = 30 e o
number MCTS simulations = 30 o
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Example 1: Learning traction-separation models from DEM simulations

Reinforcement Learning Training Iterations

Score=0.191

P Experimental Data
I

Prediction from model

3

6

10

Automatically generated directed graphs of traction-separation models

0.8

‘0.0 0.2 0.4 0.6
Um [mm]
2.0
1.5
)
o,
Z1.0
=
0.5
,,‘—-o— Experimental Data
r Prediction from model
08% 02 04 06 08
Um [mm]
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Score=0.459

Pk Experimental Data

| Prediction from model
085 02 04 06 0.8
Up [mm]

Score=0.653

--=- Experimental Data
—— Prediction from model

08

Blind predictions against unseen data

-=+- Experimental Data
Prediction from model

0.2 0.4 0.6
Um [mm]

0.8

0.2 0.4 0.6 0.8
Up [mm]
2.0
1.5 N
T
o
1.0
S
0.5
-=- Experimental Data
Prediction from model
080 02 04 06 08
Up [mm]

Score=0.915

-=- Experimental Data
—— Prediction from model

0.2 0.4 0.6 0.8
Upm [mm]
2.0
1.5
T
¥
21.0
S
0.5
-=- Experimental Data
Prediction from model
0806 o2 04 06 08
Um [mm]
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Example 1: Learning traction-separation models from DEM simulations

Hand-crafted traction-separation models  Self-reinforcement-learned traction-separation
reviewed in [M Ortiz, A Pandolfi, 1999] model validated against cyclic data

1r- (b)
3.0 0.4
--<- Experimental Data
:g"‘ 2.5 Prediction from model
0.3
— 2.0 —
« «
a¥ a¥
21.5 2.0.2
0 1 L
[} 4 6 £ £
8 mas &/0¢ =10 =
1 ) 0.1 e,
0.5 -=- Experimental Data
—— Prediction from model
0000 025 050 075 100  °Qoo 005 o010 015
& Uy [mm] Upm [mm]
=1
X 0.5 1.2
' -=- Experimental Data --- Experimental Data
. X 0.4 Prediction from model 1.0 Prediction from model
0
—_ —0.8
g‘f 0.3 gff
2 = 0.6
£0.2 E
[
= 0.4
0.1 0.2
¢ 0. 0.
Mode I: Mode TI: Mode II: 8.0 8‘1 (mm] 0.2 9.0 3'2 0.4
Opening In-plane shear  Out-of-plane shes m m [mm]
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Example 1: Learning traction-separation models from DEM simulations

Statistical performance of meta-modeling over self-learning sessions

Distribution of  Highest score

Standard deviations
scores played

1.0 / 1.0,

0.8 0.8
® O "
— bt
30.6° S0.6
N W
2 C
@) 04 o 04
2. p

0.2 | 0.2

Median \ Lowest score Mean value
' 0 2 4 §) 8 10 ' 0 2 4 6 8 10
DRL Iteration DRL Iteration

Mean value and % standard
deviation of model score in each
DRL iteration in each DRL iteration

Violin plots of the density
distribution of model scores
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Example 2: Learning elasto-plasticity constitutive models

Two-agent game: data collections and meta-modeling

Game choices for experimentalist agent Game choices for modeler agent

t = radial

Parameters of DRL: number of Iterations = 10, number of episodes = 30, number MCTS
simulations = 300
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Example 2: Learning elasto-plasticity constitutive models

Game board (Directed multi-graph of generalized elasto-plasticity)

e Graph nodes: elastic stiffness,
loading direction, plastic flow
direction, plastic modulus

Graph edges for definitions in
generalized plasticity.

* 4 million possible number of
configurations for both
experimentalist and modeler
combined — impossible to hand
crafting all possible choices.

* DRL with MCTS is used to solve
the combinatorial optimization
problem

e With 2% of total evaluation, we
obtain the estimated optimal
choice.
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Example 2: Reverse engineering from data of black-box models

Validation (reverse engineering): given data generated by a specific elasto-plasticity model,
check whether the meta-modeling can identify the correct constitutive model.

Reinforcement Learning Training Iterations

——
0 3 6 10
Drucker—Prager Plasticity data
Score=0.123 Score=(0.278 Score=0.513 Score=1.000
Training tests =[T2,T5| Training tesis =|T6| Training tesis =|T1, T4, T5T7] Training tests =|T4,T6]
600 GO0 600 600
-=- Experimental Data -=- Experimental Data -=- Experimental Data -=- Experimental Data
500 —— Prediction from model 500 — Prediction from model 500 — Prediction from model 500 — Prediction from model
400 400
E ’,-"’_\"h.k_-k E
= 300 o, =2 300
o o
200 T 200
100 100
oo 00z o004 ®oo 002z 004 oo 002 004 oo 00z 004
E11 €11 E11 €11
Matsuoka—Nakai Plasticity data
score=0.152 Score=(.331 Score=0,549 Score=1.000
Training tests =[T3,T4,T5,T6] Training tests =[T2,T4| Training tests =[T5,T6] Training tests =[T3,T4,T5,T6|
1500 1500 1500 1500
=== Experimental Data === Experimental Data === Experimental Data === BExperimental Data
1250 = Prediction from model 125 = Prediction from model 1250 = Prediction from model 125() = Prediction from modeal
1000 ;"ﬁ‘: 1000 1000
z |/ z z z
= 730 i v ) = 750 2 750
o H 1 o o o
500 "\ 500 500
.\h“ﬂ—-mm
230 250 250
lE'!UIL!' 0.02 0.04 'I.P.UL'I 0.02 0.04 lE'!UL'I' 0.02 0.04 l?.{.'l{.'l 0.0z .04
£11 £1 £11 £11
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Example 2: Learning elasto-plasticity constitutive models

Score=0.274

Training tests =[T1,T9,T11]

Eq

G =l Ao

(38)’ " . / Tst

ey = Ay,

Eqd2)  x «

"Eq (82)

— o e A N

Eq(54) G 4 d

qlp

&y

Aty

0%oo  0.02 0.04
€11
0.05
0.04
0.03
0.02
0.01]
0.00
-0.01

00200 00z o004
£11

=[T3,T5,T6,T8,T11,T12]

Eq (36)

o &
Eq (50)
Fq 4% |
Eq (54)

A Ta A

Score=0.349

Reinforcement Learning Training Iterations

Training tests

G

z
I |

oad _y,
X /4

H,

A Eyery

v

/
A At

-

Ady,, ™ A€,

1.25

1.00

0.75
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0.25

0-8000
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0.04
0.03/

0.02]

Ey

0.01
0.00
—-0.01"

~0-0200

0.02
€11

0.02
€11

0.04

Score=0.520

Training tests =|T1,T3,T4]

u,Ea (u:"'_’): n
Eq (55) 4 4 /

Ev

Eq (37) (@ - A
s

v

o @) A Ay
Eq(52)< %\ «

/

e A,

7/

Aea

0%00  0.02 0.04
€11
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0.03
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0.00

-0.01

0%o0 002 002
€11

Score=0.652
Training tests
=|T1,T1T3,T4,T5,1T7,T9,T10,T11,T12]

Eq (37) C; - A0
s L4

o =@ A Ay

Eq(33)  \
T Lot o (o Ay
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Example 2: Learning elasto-plasticity constitutive models

Score=0.652

C; Ao
4 \ ”It?ﬂd =
& = v mp > Ad ™ Aey, FJ
4 a
N , K =Ko(F)
A\ Pat i
oy ol L p nhm _
/ g -
/ G = Go(+)* :
* /:/ Pat
H, A
A€y '/

Edges of the optimal digraph

Ef.f

1+ d2

f

\f

*+

\31 a’

(1+a)(Myexp(me(1—e))+q/p)

m_f low dg
v - r—2

m.f low 1
5 - II,'—
Vf 1+ d%

dg = (1+a)(Mgexpmgyp +q/p)
p=e—en+ E.(p/Pnf)n

Examples of blind predictions from the optimal digraph configuration against data from the tests
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Example 2: Learning elasto-plasticity constitutive models

Statistical performance of meta-modeling over self-learning sessions

1.0 - | - 1.0
0.8 0.8
o o
S0.6 S 0.6
W W
T T
0.4 2 0.4
>, >,
0.2 0.2
0002 2 6 8 10 002 4 6 8 10
DRL [teration DRL Iteration

Mean value and % standard
deviation of model score in each
DRL iteration in each DRL iteration

Violin plots of the density
distribution of model scores
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Example 2: Post-game analysis: performance in blind predictions

Five classes of the constitutive models generated during the deep
reinforcement learning

Model | Number Mean Standard | Generalized | Critical | Classical pressure | Others

Class of Models | Score deviation | Plasticity State dependent elasto- | ‘O’
'GP’ 'CS’ plasticity "DP’

1 22 0.603 0.054 v v

2 25 0.565 0.051 v

3 13 0.295 0.028 v v

4 19 0.450 0.086 v

5 33 0.163 0.063 v

Distribution of the scores of the models generated during the deep

. . o

reinforcement learning. ——
14 n Class 2: 'GP’

. . . —— Class 3: 'DP' + 'CS'
The models are grouped into five families (see Table ). —— Class 4: 'DP'
L —— Class 5: 'O’

The curves present the Gaussian kernel density estimationo

of the model score distributions .

Density

6

The analysis confirms that generalized plasticity (no
yield surface and plastic potential) and critical state 4
(dependence on pressure and porosity) are important
ingredients in an accurate elasto-plasticity model for

granular materials %0 = Io.z' - 0.4|

AT |
0.6

Score

0.8 1.0
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Example 2: FEM predictions using the generated constitutive models

Model 1

500/ —+— Model 2
—— Model 3
—=— Model 4
Foo 0.01 0.02
2 Eyy
*1—.‘-
—— Model 1
0.002) Model 2
—— Model 3
—— Model 4
0.000;
-0.0021
—0.004
Shear band 0.00 0.01 0.02
Eyy
observed in
experiment

1stiteration 5thiteration 8 iteration 10t iteration

40 | Meta-modeling of Multi-scale Geomaterials with Deep Learning




Conclusion

This metal-modeling approach is the key for us to exploit the computer power to make
repeated trial-and-errors and improve from experiments over time to generate the best
model outcomes, instead of spending significant human time to explore through curve-
fitting physical processes. Human labor can focus on expanding action spaces (nodes
and edges choices), designing rules and objective functions.

Since the machine learning procedure is automated, models intended for fulfilling
different demands (speed, accuracy, robustness) can be automatically generated and
improved over time through self-play in the model-creation game.

Since the validation procedure is introduced as the reward mechanism for the agent to
find the best models available, the resultant models are always validated at the end of
the game.

The metal-modeling approach is generic, reusable and easily expandable, which
means that it can handle different situations with different data, action spaces,
objectives and rules set by human without going through additional derivation,
implementation, material parameter identification and validation.

& COLUMBIA\ ENGINEERING
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THANK YOU!

More information can be found at
http://www.poromehanics.org

e K. Wang, W.C. Sun, Q. Du, A cooperative game for
automated learning of elasto-plasticity knowledge
graphs and models with Al-guided experimentation,
Comput. Mech., 2019

e K. Wang, W.C. Sun, Meta-modeling game for deriving
theory-consistent, micro-structure-based traction-
separation laws via deep reinforcement learning,
CMAME, 2019.

e K. Wang, W.C. Sun, A multiscale multi-permeability
poroplasticity model linked by recursive
homogenizations and deep learning, CMAME, 2018.
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http://poromehanics.weebly.com/
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