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Motivation and Background
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[Wang & Sun, 2018]

[Pollard & Aydin, 1984] [Skurtveit et al., 2015]

Multi-scale Modeling of geological systems

Multi fracture sizes in geomechanics
(multiple length & time scales)



Motivation and Background
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Surrogate models for upscaling can be theory-based models with hand-
crafted mathematical expressions, or data-driven models with neural 
networks (as universal function approximators) learning from data.

Surrogate models of constitutive behaviors across multiple length scales

[Wang & Sun, 2018]



Examples of Material Laws
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Traction-
separation laws

Porosity-
permeability 
relationship

Stress-strain 
relationship

Crack growth in composite San Andreas fault



Timeline of Scientific discovery in geomechanics constitutive models
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Accelerate scientific discovery using machine learning 

Traction

Displacement 
jump Fabric tensor

Porosity

After 
machine 
learning

Von Mises J2 plasticity
1910s 

Mohr-Coulomb
1770s, 1880s 

Drucker-Prager
1950s 

Knowledge graph 
from domain 
experts

Critical state soil mechanics 
1960s 

Sand model with fabric 
tensor 2004 

Discover new mechanisms

Dependence on 
mean effective 
pressure

Dependence on 
void ratio

Dependence on 
fabric tensor

Machine Learning on knowledge graphs:
Nickel, Maximilian et al. (2015), 
Battaglia, Peter W., et al. (2018), …



Why machine learning for constitutive modeling?

Key Idea: Use DRL to generate knowledge graph
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Scientific machine learning for constitutive modeling process
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Graph-based predictions – designed to 
generate knowledge represented by 
directed graph with the same internal 
properties of human thinkers. 

Black box ANN – designed to 
replicate external behaviors 
without  caring internal properties 
(e.g. thermodynamics…etc) 

Machine Learning focusing on internal properties
Why?
• Machine learning is often being used as a black box and people need to develop trust 

for it. (Geotechnical engineering problems are high-regret & safety-critical)
• Small data (geomechanics experiments) versus Big data (Image Recognition)
• Leveraging domain knowledge and constraints in ML formulations

Traction

Displacement jump
Fabric tensor

Porosity

Coordination 
number



Analogy of Constitutive Modeling to Games
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Chess Game

Move pieces to 
put the opponent's 
king in "checkmate"

Go Game

Place pieces to 
control more territory 
than your opponent

Meta-modeling Game

Connect edges to generate 
optimal internal information 
flow of constitutive models

Traction

Displacement jump Fabric tensor

Porosity

Coordination 
number



Superhuman Performance of AI in learning the strategies of games
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Beginner level
with greedy plays

3 hours

Learnt the fundamentals 
of Go strategies

19 hours

Super-human level
with disciplined plays

70 hours

Alpha Go Zero

https://deepmind.com/b
log/alphago-zero-
learning-scratch/

Legal game positions: 
2e170 
>  atoms in universe 
1.6e79

10 games

Meta modeling 
DRL
Legal game positions 
depend on the number 
of nodes of internal 
features

In our example: 
over 2e4

30 games 100 games



How does the meta-modeling approach work?
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Graph representation of knowledge
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Representation of mechanics knowledge in graphs, directed Graph and directed multi-graph

• Vertices  - a measurable physical properties 
(permeability, thermal conductivity, force, 
displacement, strain..etc) 

• Directed Edges – a existing hiearcheircal relationship 
between two vertices 

• Edge Labels – the specific model used to connect 
two physical vertices. The model can be 
mathematical, neural network, support vector 
machine …etc

• Directed graph – the combinatorial optimized 
configuration of the vertices connected by edges, 
each with one unique labels. 

• Label Directed Multi-graph – all the possible way the 
vertices are connected by different combination of 
edges with different labels

JF Sowa, Conceptual Graphs for a Data Base Interface, IBM J. RES. DEVELOP., 1976 



Leverage hand-crafted models to expand multi-graphs
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Use directed multi-graph to represent possible theories and models (Graph representation
of knowledge) – Worst case scenario – we recover the best hand-crafted model but we
won’t generate any new model that performs worse than existing state-of-the-art.

Example: traction-separation models



Find optimal directed graph for a constitutive model from directed 
multi-graph
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Formalization of the meta-modeling game in graph theory



Meta-modeling game for feature extraction and constitutive models
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Key ingredients of a game



Game Environment
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Data Generation: Computational homogenization of traction-separation law for 
strong discontinuity



Game Environment
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Internal properties (nodes of the directed graphs) may include porosity, 
coordination number, fabric tensor, and quantitative measures of  the graph of 
grain contact connectivity (e.g., average shortest path, graph density)



Game Board
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Example game



Game Action Choices (Example): Neural network models for 
connecting information flow
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long-short term memory

Multilayer perceptron

Recurrent neural networks

[J Ghaboussi et al. 1991]
[M Lefik and BA Schrefler. 2003]

Treating path-dependent 
behavior is non-trivial

[Zhu JH et al. 1998]

• Capable of memorizing 
deformation history

• Gradient vanishes in long 
term memory

This work
• Overcoming gradient 

vanishing or exploding 
issues

• Circumventing over-fitting 
with dropout layers



Game Rules: Mechanics Principles (e.g., material frame indifference)
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ML w/ invariant and so(3)
(cf. Wang & Sun, 2018)

ML w/ tensor components
(cf. Ghaboussi et al, 1998) 

Tensor component as input lead to lack of  
objectivity (prediction depends on observer)

Tensor invariant as input lead to lack of  
objectivity (prediction independent of observer)



Game Reward: Objective function with calibration/validation
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Modeling procedure of meta-modeling: Markov decision process

21 | Meta-modeling of Multi-scale Geomaterials with Deep Learning

A gameplay example formalized as a Markov decision process



Game Playing: Improvement of predictions through self-playing
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Adapted from AlphaGo Zero
[D Silver et al., 2017]
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Game Playing: Monte Carlo Tree Search

𝑣𝑣 𝑠𝑠 : Value of state s of each 
edge

𝑝𝑝 𝑠𝑠, 𝑎𝑎 : Probability of taking 
action a at state s

𝑄𝑄(𝑠𝑠, 𝑎𝑎): Value of taking 
action a at state s

𝑈𝑈𝑄𝑄(𝑠𝑠, 𝑎𝑎): Estmated upper 
bound of 𝑄𝑄(𝑠𝑠, 𝑎𝑎) of taking 
action a at state s



Two agents to play the meta-modeling game collaboratively
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Experimentalist Agent 
Game board: All experiment choices: (uniaxial, biaxial, simple shear, …)
• Game actions: choose the tests to be conducted for model calibrations
• Game goal:

1. Maximize the final model score (global goal, need to be checked by the 
subsequent Model Game)

2. Minimize the total number of tests (local goal) 

Modeler Agent (identical to the previous single agent)
• Game board: All modeling choices: (mathematical, ANN, …)
• Game actions: choose the modeling edges to connect the physical quantities
• Game goal:

1. Maximize the final model score



Two-agent game: data collections and meta-modeling
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• Both the modeler and the experimentalist has a common goal of replicating the physics as 
close as possible.

• The experimentalist also has its local goal of minimizing the experiments but needs to 
work collaboratively with the modeler to achieve the common goal.

• Multi-agent Multi-objective Deep-Q-learning creates AI to play the Data and Model 
games and learn from repeating generating models automatically  



Markov decision process for data collection and meta-modeling
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Modeler Agent (identical to the previous single agent)

Experimentalist Agent

Initial state 𝑠𝑠0
Action
𝑎𝑎0 = 𝑇𝑇𝑇 State 𝑠𝑠1

Action
𝑎𝑎1 = 𝑇𝑇𝑇 State 𝑠𝑠2

Action
𝑎𝑎2 = 𝑇𝑇𝑇 Final state 𝑠𝑠3

Reward 𝑟𝑟3Reward 𝑟𝑟2Reward 𝑟𝑟1

Construct
calibration 
data

Global 
Reward

Set of experiments 
[T1]

Set of experiments 
[T1, T3]

Set of experiments 
[T1, T3, T5]

Set of experiments 
[T1, T3, T5, T8]



Self-play reinforcement learning of Data Agent and Model Agent

27 | Meta-modeling of Multi-scale Geomaterials with Deep Learning



What could be the applications of 
the meta-modeling approach?
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Example 1: Learning traction-separation models from DEM simulations
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Material: DEM

Graph nodes of internal features: porosity, coordination number, fabric tensor, strong fabric 
tensor, degree assortativity, transitivity coefficient, average shortest path length, density of 
the graph

Graph edge choices: LSTM neural networks

Parameters of DRL: number of Iterations = 10
number of episodes = 30
number MCTS simulations = 30

Game board
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Example 1: Learning traction-separation models from DEM simulations
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Hand-crafted traction-separation models
reviewed in [M Ortiz, A Pandolfi, 1999]

Self-reinforcement-learned traction-separation 
model validated against cyclic data

Example 1: Learning traction-separation models from DEM simulations
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Statistical performance of meta-modeling over self-learning sessions

Mean value and ± standard 
deviation of model score in each 
DRL iteration in each DRL iteration 

Distribution of 
scores Standard deviations

Mean valueLowest score 
played

Violin plots of the density 
distribution of model scores 

Highest score 
played

Median

Example 1: Learning traction-separation models from DEM simulations
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Example 2: Learning elasto-plasticity constitutive models
Two-agent game: data collections and meta-modeling

Game choices for modeler agentGame choices for experimentalist agent

Parameters of DRL: number of Iterations = 10, number of episodes = 30, number MCTS 
simulations = 300
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Example 2: Learning elasto-plasticity constitutive models
Game board (Directed multi-graph of generalized elasto-plasticity)

• Graph nodes: elastic stiffness, 
loading direction, plastic flow 
direction, plastic modulus

• Graph edges for definitions in 
generalized plasticity.

• 4 million possible number of 
configurations for both 
experimentalist and modeler 
combined – impossible to hand 
crafting all possible choices. 

• DRL with MCTS is used to solve 
the combinatorial optimization 
problem

• With 2% of total evaluation, we 
obtain the estimated optimal 
choice. 
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Example 2: Reverse engineering from data of black-box models
Validation (reverse engineering): given data generated by a specific elasto-plasticity model, 
check whether the meta-modeling can identify the correct constitutive model.



Example 2: Learning elasto-plasticity constitutive models
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Example 2: Learning elasto-plasticity constitutive models
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Examples of blind predictions from the optimal digraph configuration against data from the tests

Score=0.652 Edges of the optimal digraph



Example 2: Learning elasto-plasticity constitutive models
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Mean value and ± standard 
deviation of model score in each 
DRL iteration in each DRL iteration 

Violin plots of the density 
distribution of model scores 

Statistical performance of meta-modeling over self-learning sessions



Example 2: Post-game analysis: performance in blind predictions 
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Five classes of the constitutive models generated during the deep 
reinforcement learning

Distribution of the scores of the models generated during the deep 
reinforcement learning. 

The models are grouped into five families (see Table ). 

The curves present the Gaussian kernel density estimation
of the model score distributions

The analysis confirms that generalized plasticity (no 
yield surface and plastic potential) and critical state 
(dependence on pressure and porosity) are important 
ingredients in an accurate elasto-plasticity model for 
granular materials



Example 2: FEM predictions using the generated constitutive models 
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10th iteration1st iteration 5th iteration 8th iteration

Shear band 
observed in 
experiment

Shear band replicated in ML-FEM simulation



Conclusion
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• This metal-modeling approach is the key for us to exploit the computer power to make 
repeated trial-and-errors and improve from experiments over time to generate the best 
model outcomes, instead of spending significant human time to explore through curve-
fitting physical processes. Human labor can focus on expanding action spaces (nodes 
and edges choices), designing rules and objective functions.

• Since the machine learning procedure is automated, models intended for fulfilling 
different demands (speed, accuracy, robustness) can be automatically generated and 
improved over time through self-play in the model-creation game. 

• Since the validation procedure is introduced as the reward mechanism for the agent to 
find the best models available, the resultant models are always validated at the end of 
the game. 

• The metal-modeling approach is generic, reusable and easily expandable, which 
means that it can handle different situations with different data, action spaces, 
objectives and rules set by human without going through additional derivation, 
implementation, material parameter identification and validation.
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THANK YOU!
More information can be found at 

http://www.poromehanics.org 

• K. Wang, W.C. Sun, Q. Du, A cooperative game for 
automated learning of elasto-plasticity knowledge 
graphs and models with AI-guided experimentation, 
Comput. Mech., 2019

• K. Wang, W.C. Sun, Meta-modeling game for deriving 
theory-consistent, micro-structure-based traction-
separation laws via deep reinforcement learning, 
CMAME, 2019.

• K. Wang, W.C. Sun, A multiscale multi-permeability 
poroplasticity model linked by recursive 
homogenizations and deep learning, CMAME, 2018.

http://poromehanics.weebly.com/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42

