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AI for Science Townhalls

• Four “Townhalls” aimed at getting input from the DOE community on 
opportunities and requirements for the next 5-10 years in computing 
with a focus on convergence between HPC and AI

• July (Argonne), August (Denver), September (Berkeley), October 
(Washington)

• Modeled after the 2007 Townhalls that launched the Exascale 
Computing Initiative

• Each meeting covers roughly the same ground, geographically 
distributed to enable local participation

• Applications in science, energy and technology
• Software, math and methods, hardware, data management, 

computing facilities, infrastructure, integration with experimental 
facilities, etc.

• Expect ~200 people per meeting
• Output will be a report to guide strategic planning at Labs and DOE

Organized by Argonne, Oak Ridge and Berkeley with participation from all the 
laboratories.. 



Innovation XLab Artificial Intelligence Summit

• Event date confirmed for Oct 2-3, 2019
• 11 of 17 national labs actively involved in planning: ANL, LLNL, ORNL, LBNL, BNL, LANL, SNL, NETL, 

FNAL,PNNL, SLAC
• Industry focus areas: Energy, Manufacturing, Healthcare, Risk
• Set up Steering and Program Committees consisting of PIs and tech transfer participants from all 

the labs; regular calls held to coordinate input and ensure broad participation
• Initial list of industry attendees generated with ~650 names 
• Initial list of speakers and panel participants generated with ~75 names
• Target agenda draft by June 21
• DOE-OTT weekly call with the Organizing Committee kicked off on June 10 

The next in the series of Innovation XLab events will be hosted by Argonne in 
Chicago on October 2-3, 2019
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In symbols one observes an 
advantage in discovery which is 
greatest when they express the exact 
nature of a thing briefly and, as it 
were, picture it; then indeed the 
labor of thought is wonderfully 
diminished.
— Gottfried Wilhelm Leibniz 



DOE/Argonne was the home to a leading symbolic AI 
group from the 1960’s to the mid 2000’s working on 
Automated Theorem Proving

Attendees at an Argonne
ATP “theory institute” in 1990.





What is possible?



Things we can do with AI now

Learn predictive models from data without relying upon theory or deep 
mechanistic understanding 

Example: predicting materials and chemistry properties

Learn approximate solutions to inverse problems where we have data 
and models are not available or are inefficient

Example: phase retrieval in coherent x-ray imaging 

Generate large collections of synthetic data that models real data
Example: synthetic sky in cosmology



Things We Want To Do With AI In The Future

• Develop methods that can learn from both encoded symbolic theory (e.g. 
QM/GR) and large-scale data so we can leverage the vast theoretical 
knowledge we have accumulated over hundreds of years

• Automate and accelerate discovery from planning, to conjecture, to 
experiment, to confirmation and analysis ⇒ end-to-end automated 
science

• Create an ability to use AI for generating new theories that address the 
problematical areas of existing theories



In Ten Years…
 Learned Models Begin to Replace Data

–queryable, portable, pluggable, chainable, secure
Experimental Discovery Processes Dramatically Refactored

–models replace experiments, experiments improve models
Many Questions Pursued Semi-Autonomously at Scale

–searching for materials, molecules and pathways, new physics
 Simulation and AI Approaches Merge

–deep integration of ML, numerical simulation and UQ 
 Theory Becomes Data for Next Generation AI

–AI begins to contribute to advancing theory
AI Becomes Common Part of Scientific Laboratory Activities

– Infuses scientific, engineering and operations



A Sampling of Science Opportunities



Materials and Chemistry

Metal ions and 
complexes at liquid 

interfaces

Nonequilibrium superconductivity

Tian et al. PRL 2016

 Design of materials and molecules
 AI-guided synthesis

– automated design of chemical pathways
– mapping metastable phases
– extracting mechanisms

 Predictive interfacial transport of ions and charge
 AI-accelerated ab Initio molecular dynamics
 Quantification of energy drivers for separations
 Describing multiscale charge, spin, lattice correlations
 Exploring energy landscapes in ultrafast, 

nonequilibrium, and driven systems and processes
 Inverse design, bandstructure engineering





Advanced Photon Source Upgrade
AI can drive the scientific and measurement motifs enabled by APS-U

Detect rare events/features in large volumes 
with nanoscale resolution

Metal fatigue, solid-state batteries, 
brain circuitry

Capture dynamic processes Catalyst coarsening, precision 
synthesis, additive manufacturing

Enable multidimensional inquiry, exploring spaces 
of higher dimension and size

High-entropy alloys, metal fatigue, 
catalysts

APS-U’s 2-3 orders of magnitude 
increased brightness and coherent 
flux, will lead to: 
 Massive data, too much for humans 

to handle
 Data rates too fast for human 

management

Analyze: reconstruct, feature extraction, 
viz, optimized photon dose

Control: real-time autonomous execution 

AI at the edge: 
autonomous data reduction near the source

Advanced accelerator control:
100’s of control points, 1000’s of inputs

Fast, many 
megapixel detectors



Climate and Biology
 Accelerated Climate Models (PDE/ML hybrids)
 Improved integration of remote sensing and ground truthing into 

Climate Models (cloud/precipitation, land cover/biogeochem, sea 
ice/calibration, etc.)

 Improvement in ARM data pipelines, automated model extraction from 
data, smart data fusion

 Vast applications in genomics and metagenomics (G ⟹ P)
 Automation of bioinformatics methods (improved productivity)
 Automating hypothesis formation in biology (causal analysis)
 Forward design of novel pathways, proteins, regulons, operons, 

organisms, etc. for secure biodesign
 Anomaly detection (discovery in sequencing, biosecurity, etc.)



High Energy Physics
Gaussian 

Random Field 
Initial Conditions

High-Resolution  
N-Body/Hydro  

Code

Multiple Outputs  
Halo/Sub-Halo 
Identification

Halo  Merger 
Trees

Galaxy Modeling

Value-Added 
Source Catalogs

Realistic Image 
Catalogs

Atmosphere and 
Instrument 
Modeling

Data Management 
Pipeline

Data Analysis 
Pipeline

Scientific 
Inference 

Framework

Simulated Image Actual Image

AI applications in an “end-to-end” Cosmic Frontier 
application: 1) GANs for image emulation, 2) GP and DL-
based emulators for summary statistics, 3) CNN-based image 
classification, 4) AI-based photometric reshift estimation, 5) 
Likelihood-free methods for inference [Work performed under 
the Argonne-led SciDAC-4 project:  “Inference and Machine 
Learning at Extreme Scales”]

Energy/Intensity Frontier:
 Search for Beyond the Standard Model (BSM) physics 

through AI-driven anomaly detection
 AI-reduced uncertainties to enable precision electroweak 

measurements for BSM clues 
 Generative Adversarial Networks (GANs) for large-scale 

Large Hadron Collider detector simulation

Cosmic Frontier – AI in end-to-end application:
 Precision Cosmic Microwave Background emulation – AI 

simulation speed-up of a factor of 1000
 Search for strong lensing of galactic sources for precision 

cosmology measurements using AI classification, 
regression, and GANs for image generations

 AI-based Photometric Redshift Estimation
 Combination of AI methods to enable searches for hidden 

space variables



Nuclear Physics
 AI- and deep learning-guided insight to unravel new physics in quantum 

chromodynamics
– Active Learning and Generative Adversarial Networks (GANs) to discover new 

sum rules and violations of constraints
 AI and deep learning for ATLAS and Electron-Ion Collider to probe fundamental 

questions: How do mass and spin of nucleons arise, how do nucleosynthesis and 
stellar evolution produce current abundances?

– Deep neural network for detector and accelerator design optimization
– GANs for self-tuning performance-maximizing detector configurations and 

time-saving online accelerator tuning in multi-beam/multi-detector experiments
– AI-assisted data analysis of many-body break-up and dynamics: tag recoil 

spectators to isolate struck nucleon
 AI-driven data analysis of neutrino-less double beta decay
 Sparse neural network with scalable machine learning techniques accelerate 

computations and extend range of experiments
 GANs and segmentation networks improve detector understanding and 

resolution

Transverse momentum slices of  u 
and d quarks in a longitudinally 
polarized proton.

¯
¯



Connecting HPC and AI

 Steering of simulations
 Embedding simulation into ML methods
 Customized computational kernels 
 Tuning applications parameters
 Generative models to compare with simulation
 Student (AI) Teacher (Sim) models ⟹learned functions
 Guided search through parameter spaces
 Hybrid architectures HPC + Neuromorphic
 Many, many more

In addition to partnerships in AI applications, there are considerable 
opportunities in foundational methods development, software and software 
infrastructure for AI workflows and advanced hardware architectures for AI, 
below we highlight some ideas in the HPC + AI space

Generative  Models

AI Accelerators



AI at Argonne: Broad Span of Scientific Targets

Strong and weak lensing 
in sky survey data

Prediction of antimicrobial 
resistance phenotypes

Prediction of radiation 
stopping power

Identification and tracking 
of storms

Parameter extraction in 
atom probe tomography

Learning for dynamic 
sampling in spectroscopy

Structure-property-process 
triangle in additive manufact.

Vehicle energy 
consumption prediction

Photometric red shift 
estimation

New materials for efficient 
solar cells

Cosmic Microwave 
Background emulation

Enhancement of noisy 
tomographic images

Nowcasting with 
convolutional LSTMs

Efficient climate model 
emulators

Defect-level prediction in 
seminconductors

Flying object detector for 
edge deployment

Discovery of new energy 
storage materials

Reduced order modeling 
of laser sintering



Example from Cancer Research





Modeling Cancer Drug Response
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Example from Traumatic Brain Injury



Caudate

Pallidum

Putamen

Amygdala

Hippocampus

Lateral Ventricle

Thalamus

White Matter
Cortex

CT MRI “Super-resolution”

Anatomical Segmentation

CT

MRI

Connectomics

Diagnosis/Prognosis
DL Model

CT 
Scan

Patient working 
after 6 months?

85% accurate

Presenter
Presentation Notes
We are applying DL to all these tasks. DL segmentation improves generalizability and speed over traditional affine registration alignments.The current Connectome pipeline bottleneck is also segmentation of the MRI. DL methods provide ~240x speedup over current Freesurfer approach.GAN translation/super resolution viable for enhanced imaging and knowledge transfer/pretraining with cross-modal labels.



Training with diverse data modalities and 
phenotypes

Presenter
Presentation Notes
Infographic of some of the diverse brain data we have currently collected. Multiple terabytes and tens of thousands of patients.



Enhance CT imaging and exploit labels from other modalities

Generative Adversarial Networks

Presenter
Presentation Notes
Quick GAN visual intro



GAN Model trained on TBI patient data

Real CT Real MR Fake MR

Presenter
Presentation Notes
Actual model trained with TBI patient MRI and CT paired volumes. 2d convolutional GAN. 3D architecture would improve the coherency between slices but requires many more computational resources.



Diverse brain disease MRI data for identifying abnormal CT 

Meningioma Glioma

Tumor

Stroke Lesion
TBI Lesion/Midline Shift

Normal CT
Normal MRI

Knowledge transfer for CTCNN Model trained on normal/abnormal MRI slices

Presenter
Presentation Notes
CNN model was pretrained on MRIs from patients with visually identifiable tumor and stroke anomalies. Model then fine tuned with TBI CT images with no manual/ground truth lesion labels and tasked to predict slices with anomalies.



Building the AI Environment for Science



Foundations Mathematics, algorithms; general AI, reinforcement learning, 
uncertainty quantification, explainability, etc.

Hardware
Advanced hardware to support AI. Evaluation of new 
architectures and systems; exploration of neuromorphic 
and quantum as long term accelerators for AI.

Learning systems
AI software. Software infrastructure for managing data, 
models, workflows etc., and for delivering AI capabilities 
to 1,000s of scientists and engineers.

Applications AI applications across science and engineering. Transformative 
approaches to simulation and experimental science.

AI for Science Requires 
New Research and Infrastructure



Infrastructure for AI-enabled Science

Scientific instruments
Major user facilities
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Automated labs
…

Sensors
Environmental
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…
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System Software

Data 
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Operating 
system

Portability
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Runtime 
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Workflow
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Libraries

Resource 
mgmt Authen/Access
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DLHub: Organizing and Serving Models
https://www.dlhub.org

 Collect, publish, categorize models
 Serve models via API with access controls 

to simplify sharing, consumption, and 
access
 Leverage  ALCF resources and prepare for 

Exascale ML
 Deploy and scale automatically
 Provide citable DOI for reproducible 

science
Argonne Advanced Computing LDRD

Cherukara et al.

Models and Processing Logic as a Service

Ward et al.

Input

Output

Energy Storage TomographyX-Ray Science

TomoGAN: Liu et al.

Presenter
Presentation Notes
Citations: [1] Liu, Zhengchun, Tekin Bicer, Rajkumar Kettimuthu, Doga Gursoy, Francesco De Carlo, and Ian Foster. "TomoGAN: Low-Dose X-Ray Tomography with Generative Adversarial Networks." arXiv preprint arXiv:1902.07582 (2019).[2] Cherukara et al. “Real-time coherent diffraction inversion using deep generative networks”, 2018.[3] Ward et al. "Machine Learning Prediction of Accurate Atomization Energies of Organic Molecules from Low-Fidelity Quantum Chemical Calculations” MRS Communications AI Special Issue (invited) – under review, 2019



CANDLE: Exascale Deep Learning Tools
Deep Learning Needs Exascale
 Automated model discovery
 Hyper parameter optimization
 Uncertainty quantification
 Flexible ensembles
 Cross-Study model transfer
 Data augmentation
 Synthetic data generation
 Reinforcement learning

https://github.com/ECP-CANDLE



 Leverage DOE expertise in automatic 
differentiation, symbolic computing and optimization 
to ensure that machine learning for science is 
forward looking, methods are robust and models 
interpretable
 Many facets relevant to science 

– Integration of symbolic computing with machine learning
– Prediction and inference of spatio-temporal processes
– Derivatives for training, sensitivity analysis, optimization, 

and UQ
– Rapid data analysis to reduce volume or identify features of 

interest
– Variety of new approaches to inference and UQ
– Identify and account for uncertainty in data sources 

and computations

Future Directions in Foundations 

Presenter
Presentation Notes
NOTE:   This is a change from last year, whereby we had a capability focused on Data Analysis and Statistics.  We added Automatic Differentiation to this area and redefined it as Foundations of ML, Data Analysis and Statistics to include the Foundations of ML in this area.Top 2 figs are from Ulvestead, Menickelly, Wild, AIP2018 and show recovered screw dislocations based on nano-scale Bragg coherent diffractive imaging data obtained at APS.Bottom fig is from Hanqi Guo and shows uncertainty of flow field.



Aurora: HPC and AI
>> Exaops/s for AI

Architecture supports three types of computing
 Large-scale Simulation (PDEs, traditional HPC)
 Data Intensive Applications (scalable science pipelines)
 Deep Learning and Emerging Science AI (training and inferencing)



Robust Learned Function Accelerators



Specialized hardware is emerging that will be 
10x – 100x the performance of 

general purpose CPU and GPU designs for AI

VCs investing >$4B in startups 
for AI acceleration

Which platforms will be good for science?



Presenter
Presentation Notes
https://github.com/basicmi/AI-Chip



AI Accelerator Testbed
Engaging the community to understand and improve specialized AI 
hardware for science

Dozens of proposed AI accelerators promise 
10x - 1000x acceleration for AI workloads. AI testbed will:
1. Provide an open and unbiased environment for 

evaluation of AI accelerator technologies
2. Disseminate information about use cases, software, 

performance on test problems
3. Support collaborations with AI technology developers, 

academics, commercial AI, DOE labs

https://github.com/basicmi/AI-Chip

Device

Staged evaluation enables identification 
of most promising systems for science

Subrack Rack



Argonne is developing AI infrastructure
 Argonne is partnering with Cerebras to 

develop and deploy an AI computing 
platform
 Scientific AI models from Cancer, 

cosmology, brain imaging and materials 
science are the first examples that will be 
deployed
 Our goal is to accelerate relevant AI model 

types for problems in materials, 
biomedical, cosmology, high-energy 
physics, energy systems, synthetic 
biology, climate, software optimization, 
architecture research etc.



AI Driven Experimental Science



autonomous molecular discovery system with 
multiple feedback loops 
Tanja Dimitrov, Christoph Kreisbeck, Jill S. Becker, Alán Aspuru-Guzik, and Semion K. Saikin
ACS Applied Materials & Interfaces Article ASAP
DOI: 10.1021/acsami.9b01226



The ATOM Platform
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Active Learning Drug Discovery Framework

Working 
Compound 

Library

Retrain property prediction 
models

Design Criteria

Human-relevant 
assays, complex 
in vitro models

Chemistry 
Design & 
Synthesis

Experiment

Molecular Feature
Simulations

Efficacy

Safety

PK

Developability

Multi-level 
models

Systems 
models

Machine Learning Pipeline
Multi-Parameter 

Optimization Loop

Simulation

Active learning 
decides if/when a simulation or 

experiment is needed to improve 
or validate models

Generative 
Molecular Design

proposes new molecules with 
optimized properties 

Jim Brase (LLNL) and the ATOM Consortium



Simulation: Estimation of Properties
Update ML

Models

Active 
Learning 

Prioritization

ML Property Prediction Pipeline

ML Generator of Candidates

Filter
Candidates

ML

UQ Scoring 
and 

Optimization

Experiment: Estimation of Properties

Layered workflow combining AI, HPC and HTS

Pure ML “constant time” (fast loop) Mixed/Variable time (slow loop)












Come to a Townhall and tell us what you need!
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