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Affordable EHR for Screening 
Alzheimer’s disease (AD)

• Biomakers - the collection of bio-
specimen (e.g., serum or fluid) or 
imaging data

➔ Time consuming

• Electronic health records (EHR)
• not require additional time or effort 

for data collection
• Increase the size of EHR data due to 

digitalization   
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Overview of EHR
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A few predefined features

• In prior work, predefined features
• sociodemographic (age, sex, education)

• lifestyle (physical activity)

• midlife health risk factors (systolic blood pressure, BMI 
and total cholesterol level)

• cognitive profiles

• Multi-factor models best predict risk for dementia

➔ Machine learning
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Machine learning on high-
dimensional EHR

• Use a large nationally representative (South Korea) 
sample cohort

• Construct and validate data-driven machine learning
models to predict future incidence of AD using the 
extensive measures collected within high-dimensional 
EHR 

• Demonstrate the feasibility of developing accurate 
prediction models for AD  
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Korean EHR data

• Korean National Health Insurance Service  -
National Elderly cohort Database

• 6,435 features

• 430,133 individuals (> 65 yrs, 10% sample of 
randomly selected elderly individuals)

• 2002 – 2010, South Korea
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High-dimensional Features
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National Elderly cohort 

Database (DB)

Health Screening (HS) 

DB

Participant Insurance 

Eligibility (PIE) DB

Healthcare Utilization 

(HU) DB

21 Features: laboratory 

values, health profiles, 

history of family illness

2 Features: sex, age

6,412 features including 

ICD-10 codes and 

medication codes



Machine learning analysis

• Input: High-dimensional EHR data

• Methods
• Random forest, support vector machine (SVM), logistic 

regression

• Task: Can machine learning be used to predict 
future incidence of Alzheimer’s disease using 
electronic health records? 

8



Definition of data

• Two criteria
• (Korean) ICD-10 code:

• Dementia in AD - F00, F00.0, F00.1, F00.2, F00.9

• AD - G30, G30.0, G30.1, G30.8, G30.9 

• Dementia medication: e.g., donepezil, rivastigmine, 
galantamine, and memantine 

• Definite AD: ICD-10 code + medication

• Probable AD: only ICD-10

9



Data range for n-year prediction

• AD group: between 2002 and the year of incident 
AD – n

• Non-AD group: 2002 to 2010 – n

10

2002 2003 2004 2005 2006 2007 2008 2009 2010

AD

Non-AD:

AD (1yr):

AD (2yr):

AD (3yr):

AD (4yr):

Example:



Data Preprocessing

• EHR alignment

• ICD-10 and medication coding
• the first disease category codes: e.g., F00.0

• the first 4 characters for the medication codes representing 
main ingredients: e.g., 149801ATB

• Rare disease exclusion (≤ 5)

• Records exist in all the three databases (HS, PIE,HU)
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# of data samples
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430,133 elderly 

individual

389,349 excluded

- Not in HS DB

40,736 individual

- In all DBs

Probable AD:2,026 

individual

Definite AD: 614 individual

Non-AD: 38,710

individual



Sample characteristics  1 

 Definite AD  Probable AD Non-AD  

Number 614 2,026 38,710 

Income $ 60k ($57.3k-

$62.7k) 

$59k ($58.7k-

$59.3k) 

$60.2k ($58.7k-

$61.7k) 

Age 80.67 (80.2-81.1) 79.2 (79.0-79.5) 74.5 (74.4-74.5) 

sex Male:229 (37%) 

Female:285 (63%) 

Male:733 (36%) 

Female:1,293 

(64%) 

Male:18,200 

(47%) 

Female:20,510 

(53%) 

*Based on the 0-year prediction model. 
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N-year prediction for definite AD
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N-year prediction for probable AD
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Model prediction result - ROC

Definite AD Probable AD 
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Important features 1 

Name b value 

Hemoglobin (H) -0.902 

Age (Demo) 0.689 

Urine protein (H) 0.303 

Zotepine (antipsychotic drug) (M) 0.303 

Nicametate Citrate (vasodilator) (M) -0.297 

Other degenerative disorders of nervous system in diseases 

classified elsewhere (D) 

-0.292 

Disorders of external ear in diseases classified elsewhere (D) 0.274 

Tolfenamic acid   200mg (pain killer) (M) 0.266 

Adult respiratory distress syndrome (D) -0.259 

Eperisone Hydrochloride (antispasmodic drug) (M) 0.255 
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(H): Health checkup

(M): Medication

(Demo): Demographics

(D): Disease



Summary (1)

• Our model AUC: 0.887 (0yr), 0.781 (1yr), 0.662
(4yr)

• Prior models AUC:  0.5 ~ 0.78

• Detected interesting EHR-based features 
associated with incident AD   
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Summary (2)

• Presents the first data in predicting future incident 
AD using data-driven machine learning based 
on large-scale EHR

• Support to the development of EHR-based AD 
risk prediction that may enable better selection 
of individuals at risk for AD in clinical trials or 
early detection in clinical settings  
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Future work

• Generalize our findings to ethnicities other than 
Korean or to different healthcare systems

• Apply deep neural networks such as a recurrent 
neural network (RNN)  
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Model prediction results (1)
 1 

Definite AD (AD codes and dementia prescription) 

  Classifier* AD/non-AD AUC 

Sensitivity** 

(when 90% 

specificity) 

Specificity** 

(when 90% 

Sensitivity) 

0 yr RF 614/38,710 0.887 0.687 0.737 

1 yr SVM 672/38,967 0.781 0.380 0.475 

2 yr SVM 640/38,605 0.739 0.281 0.400 

3 yr SVM 605/29,983 0.686 0.227 0.291 

4 yr RF 491/14,196 0.662 0.000 0.151 

 

*best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%. LR, logistic regression; 

RF, random forest; SVM, support vector machine
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Model prediction results (2)
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 1 

Probable AD (AD codes) 

  

Classifier* AD/non-AD AUC 

Sensitivity** 

(when 90% 

specificity) 

Specificity**  

(when 90% 

Sensitivity) 

0 yr RF 2,026/38,710 0.805 0.240 0.456 

1 yr RF 2,049/38,967 0.730 0.170 0.338 

2 yr LR 1,892/38,605 0.645 0.136 0.301 

3 yr LR 1,697/29,983 0.575 0.085 0.253 

4 yr RF 1,412/14,196 0.602 0.020 0.018 

 *best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%. LR, logistic regression; 

RF, random forest; SVM, support vector machine


