Electronic Health Records Based Prediction of Future Incidence of Alzheimer's Disease Using Machine Learning

Ji Hwan Parka, Han Eol Chob, Jong Hun Kim , Melanie Walld, Yaakov Stern ${ }^{c, d}$, Hyunsun Limf, Shinjae Yooa, Hyoung-Seop Kim ,

Jiook Cha ${ }^{d h}$

[^0]
Affordable EHR for Screening Alzheimer's disease (AD)

- Biomakers - the collection of biospecimen (e.g., serum or fluid) or imaging data
\rightarrow Time consuming
- Electronic health records (EHR)

- not require additional time or effort for data collection
- Increase the size of EHR data due to digitalization

Overview of EHR

3

A few predefined features

- In prior work, predefined features
- sociodemographic (age, sex, education)
- lifestyle (physical activity)
- midlife health risk factors (systolic blood pressure, BMI and total cholesterol level)
- cognitive profiles
- Multi-factor models best predict risk for dementia
\rightarrow Machine learning
© ©énercy

Machine learning on highdimensional EHR

- Use a large nationally representative (South Korea) sample cohort
- Construct and validate data-driven machine learning models to predict future incidence of AD using the extensive measures collected within high-dimensional EHR
- Demonstrate the feasibility of developing accurate prediction models for AD

Korean EHR data

- Korean National Health Insurance Service National Elderly cohort Database
- 6,435 features
- 430,133 individuals (> 65 yrs, 10% sample of randomly selected elderly individuals)
- 2002-2010, South Korea
© ©énergy

High-dimensional Features

National Elderly cohort Database (DB)

Health Screening (HS) DB
21 Features: laboratory values, health profiles, history of family illness

Participant Insurance Eligibility (PIE) DB
2 Features: sex, age

Healthcare Utilization
(HU) DB
:---
ICD-10 codes and
medication codes

7

Machine learning analysis

- Input: High-dimensional EHR data
- Methods
- Random forest, support vector machine (SVM), logistic regression
- Task: Can machine learning be used to predict future incidence of Alzheimer's disease using electronic health records?

Definition of data

- Two criteria
- (Korean) ICD-10 code:
- Dementia in AD - F00, F00.0, F00.1, F00.2, F00.9
- AD - G30, G30.0, G30.1, G30.8, G30.9
- Dementia medication: e.g., donepezil, rivastigmine, galantamine, and memantine
- Definite AD: ICD-10 code + medication
- Probable AD: only ICD-10
© © ENERGY

Data range for n -year prediction

- AD group: between 2002 and the year of incident AD - n
- Non-AD group: 2002 to 2010 - n

Data Preprocessing

- EHR alignment
- ICD-10 and medication coding
- the first disease category codes: e.g., F00.0
- the first 4 characters for the medication codes representing main ingredients: e.g., 149801ATB
- Rare disease exclusion (≤ 5)
- Records exist in all the three databases (HS, PIE,HU)

\# of data samples

12

Sample characteristics

	Definite AD	Probable AD	Non-AD
Number	614	2,026	38,710
Income	$\$ 60 \mathrm{k}(\$ 57.3 \mathrm{k}-$ $\$ 62.7 \mathrm{k})$	$\$ 59 \mathrm{k}(\$ 58.7 \mathrm{k}-$ $\$ 59.3 \mathrm{k})$	$\$ 60.2 \mathrm{k}(\$ 58.7 \mathrm{k}-$ $\$ 61.7 \mathrm{k})$
Age	$80.67(80.2-81.1)$	$79.2(79.0-79.5)$	$74.5(74.4-74.5)$
sex	Male:229 (37\%)	Male:733 (36\%)	
Female:285 (63\%)	Female:1,293	Male:18,200 (47%)	
(64\%)	Female:20,510 (53%)		

Tu.s. .epartment. ${ }^{*}$ Based on the 0 -year prediction model.

N -year prediction for definite AD

Definite AD

N -year prediction for probable AD

Probable AD

15

Model prediction result - ROC

Receiver-Opertating Characteristics

Important features

Name	b value
Hemoglobin (H)	-0.902
Age (Demo)	0.689
Urine protein (H)	0.303
Zotepine (antipsychotic drug) (M)	0.303
Nicametate Citrate (vasodilator) (M)	-0.297
Other degenerative disorders of nervous system in diseases	-0.292
Disorders of external ear in diseases classified elsewhere (D)	0.274
Tolfenamic acid 200mg (pain killer) (M)	0.266
Adult respiratory distress syndrome (D)	-0.259
Eperisone Hydrochloride (antispasmodic drug) (M)	0.255

(H): Health checkup (M): Medication (Demo): Demographics (D): Disease

Summary (1)

- Our model AUC: 0.887 (0yr), 0.781 (1yr), 0.662 (4yr)
- Prior models AUC: 0.5 ~ 0.78
- Detected interesting EHR-based features associated with incident AD

Summary (2)

- Presents the first data in predicting future incident AD using data-driven machine learning based on large-scale EHR
- Support to the development of EHR-based AD risk prediction that may enable better selection of individuals at risk for AD in clinical trials or early detection in clinical settings

Future work

- Generalize our findings to ethnicities other than Korean or to different healthcare systems
- Apply deep neural networks such as a recurrent neural network (RNN)

Model prediction results (1)

Definite AD (AD codes and dementia prescription)					
	Classifier*	AD/non-AD	AUC	Sensitivity** (when 90\% specificity)	Specificity** (when 90\% Sensitivity)
0 yr	RF	$614 / 38,710$	$\mathbf{0 . 8 8 7}$	0.687	0.737
1 yr	SVM	$672 / 38,967$	$\mathbf{0 . 7 8 1}$	0.380	0.475
2 yr	SVM	$640 / 38,605$	$\mathbf{0 . 7 3 9}$	0.281	0.400
3 yr	SVM	$605 / 29,983$	$\mathbf{0 . 6 8 6}$	0.227	0.291
4 yr	RF	$491 / 14,196$	$\mathbf{0 . 6 6 2}$	0.000	0.151

*best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%. LR, logistic regression; RF, random forest; SVM, support vector machine

Model prediction results (2)

Probable AD (AD codes)						
	Classifier*	AD/non-AD	AUC	Sensitivity** (when 90% specificity)	Specificity** (when 90% Sensitivity)	
0 yr	RF	$2,026 / 38,710$	$\mathbf{0 . 8 0 5}$	0.240	0.456	
1 yr	RF	$2,049 / 38,967$	$\mathbf{0 . 7 3 0}$	0.170	0.338	
2 yr	LR	$1,892 / 38,605$	$\mathbf{0 . 6 4 5}$	0.136	0.301	
3 yr	LR	$1,697 / 29,983$	$\mathbf{0 . 5 7 5}$	0.085	0.253	
4 yr	RF	$1,412 / 14,196$	$\mathbf{0 . 6 0 2}$	0.020	0.018	

*best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%. LR, logistic regression; RF, random forest; SVM, șupport vector machine

[^0]: a. Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, USA;
 b. Department of Rehabilitation Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea;
 c. Department of Neurology, Dementia Center, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
 d. Department of Psychiatry, Columbia University, New York, USA;
 e. Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA;
 f. Research and Analysis Team, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
 g. Department of Physical Medicine and Rehabilitation, Dementia Center, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
 h. Data Science Institute, Columbia University, New York, USA.

