

Electronic Health Records Based Prediction of Future Incidence of Alzheimer's Disease Using Machine Learning

Ji Hwan Park^a, Han Eol Cho^b, Jong Hun Kim^g, Melanie Wall^d, Yaakov Stern^{c,d}, Hyunsun Lim^f, Shinjae Yoo^a, Hyoung-Seop Kim^g, Jiook Cha^{dh}

- a. Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, USA;
- b. Department of Rehabilitation Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea;
- c. Department of Neurology, Dementia Center, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea;
- d. Department of Psychiatry, Columbia University, New York, USA;
- e. Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, USA;
- f. Research and Analysis Team, National Health Insurance Service IIsan Hospital, Goyang, Republic of Korea;
- g. Department of Physical Medicine and Rehabilitation, Dementia Center, National Health Insurance Service IIsan Hospital, Goyang, Republic of Korea;
- h. Data Science Institute, Columbia University, New York, USA.

Affordable EHR for Screening Alzheimer's disease (AD)

 Biomakers - the collection of biospecimen (e.g., serum or fluid) or imaging data

➔ Time consuming

- Electronic health records (EHR)
 - not require additional time or effort for data collection
 - Increase the size of EHR data due to digitalization

Overview of EHR

A few predefined features

- In prior work, predefined features
 - sociodemographic (age, sex, education)
 - lifestyle (physical activity)
 - midlife health risk factors (systolic blood pressure, BMI and total cholesterol level)
 - cognitive profiles
- Multi-factor models best predict risk for dementia
- → Machine learning

Machine learning on highdimensional EHR

- Use a large nationally representative (South Korea) sample cohort
- Construct and validate data-driven machine learning models to predict future incidence of AD using the extensive measures collected within high-dimensional EHR
- Demonstrate the feasibility of developing accurate prediction models for AD

Korean EHR data

- Korean National Health Insurance Service -National Elderly cohort Database
- 6,435 features
- 430,133 individuals (> 65 yrs, 10% sample of randomly selected elderly individuals)
- 2002 2010, South Korea

High-dimensional Features

National Elderly cohort Database (DB)

Health Screening (HS) DB

21 Features: laboratory values, health profiles, history of family illness

Participant Insurance Eligibility (PIE) DB

2 Features: sex, age

Healthcare Utilization (HU) DB

6,412 features including ICD-10 codes and medication codes

Machine learning analysis

- Input: High-dimensional EHR data
- Methods
 - Random forest, support vector machine (SVM), logistic regression
- Task: Can machine learning be used to predict future incidence of Alzheimer's disease using electronic health records?

Definition of data

- Two criteria
 - (Korean) ICD-10 code:
 - Dementia in AD F00, F00.0, F00.1, F00.2, F00.9
 - AD G30, G30.0, G30.1, G30.8, G30.9
 - Dementia medication: e.g., donepezil, rivastigmine, galantamine, and memantine
- **Definite AD**: ICD-10 code + medication
- Probable AD: only ICD-10

Data range for n-year prediction

- AD group: between 2002 and the year of incident AD – n
- Non-AD group: 2002 to 2010 *n*

Data Preprocessing

- EHR alignment
- ICD-10 and medication coding
 - the first disease category codes: e.g., **F00**.0
 - the first 4 characters for the medication codes representing main ingredients: e.g., 149801ATB
- Rare disease exclusion (≤ 5)
- Records exist in all the three databases (HS, PIE, HU)

of data samples

Sample characteristics

	Definite AD	Probable AD	Non-AD
Number	614	2,026	38,710
Income	\$ 60k (\$57.3k-	\$59k (\$58.7k-	\$60.2k (\$58.7k-
	\$62.7k)	\$59.3k)	\$61.7k)
Age	80.67 (80.2-81.1)	79.2 (79.0-79.5)	74.5 (74.4-74.5)
sex	Male:229 (37%)	Male:733 (36%)	Male:18,200
	Female:285 (63%)	Female:1,293	(47%)
		(64%)	Female:20,510
			(53%)

U.S. DEPARTMENT *Based on the 0-year prediction model. ERCY

COLUMBIA

PSYCHIATRY

N-year prediction for definite AD

N-year prediction for probable AD

NATIONAL LABORATORY

15

COLUMBIA PSYCHIATRY

Model prediction result - ROC

Important features

U.S. DEPARTMENT OF

ERGY

COLUMBIA

PSYCHIATRY

Name	b value	
Hemoglobin (H)	-0.902	
Age (Demo)	0.689	
Urine protein (H)	0.303	
Zotepine (antipsychotic drug) (M)	0.303	
Nicametate Citrate (vasodilator) (M)	-0.297	
Other degenerative disorders of nervous system in diseases	-0.292	
classified elsewhere (D)		
Disorders of external ear in diseases classified elsewhere (D)	0.274	
Tolfenamic acid 200mg (pain killer) (M)	0.266	
Adult respiratory distress syndrome (D)	-0.259	
Eperisone Hydrochloride (antispasmodic drug) (M)	0.255	

(H): Health checkup(M): Medication(Demo): Demographics(D): Disease

Summary (1)

- Our model AUC: 0.887 (0yr), 0.781 (1yr), 0.662 (4yr)
- Prior models AUC: 0.5 ~ 0.78
- Detected interesting EHR-based features associated with incident AD

Summary (2)

- Presents the first data in predicting future incident AD using data-driven machine learning based on large-scale EHR
- Support to the development of EHR-based AD risk prediction that may enable better selection of individuals at risk for AD in clinical trials or early detection in clinical settings

Future work

- Generalize our findings to ethnicities other than Korean or to different healthcare systems
- Apply deep neural networks such as a recurrent neural network (RNN)

Model prediction results (1)

Definite AD (AD codes and dementia prescription)								
				Sensitivity**	Specificity**			
	Classifier*	AD/non-AD	AUC	(when 90%	(when 90%			
				specificity)	Sensitivity)			
0 yr	RF	614/38,710	0.887	0.687	0.737			
1 yr	SVM	672/38,967	0.781	0.380	0.475			
2 yr	SVM	640/38,605	0.739	0.281	0.400			
3 yr	SVM	605/29,983	0.686	0.227	0.291			
4 yr	RF	491/14,196	0.662	0.000	0.151			

*best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%. LR, logistic regression; RF, random forest; SVM, support vector machine

Model prediction results (2)

Probable AD (AD codes)								
				Sensitivity**	Specificity**			
	Classifier*	AD/non-AD	AUC	(when 90%	(when 90%			
				specificity)	Sensitivity)			
0 yr	RF	2,026/38,710	0.805	0.240	0.456			
1 yr	RF	2,049/38,967	0.730	0.170	0.338			
2 yr	LR	1,892/38,605	0.645	0.136	0.301			
3 yr	LR	1,697/29,983	0.575	0.085	0.253			
4 yr	RF	1,412/14,196	0.602	0.020	0.018			

*best classifiers based on AUC. **closest values with sensitivity or specificity set to 90%. LR, logistic regression; RF, random forest; SVM, support vector machine

