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Computational biologyLife in a nutshellModeling in biology

Life at different scales

Molecules Sub-cellular EcosystemsCells tissue/organs Organisms

•Highly organized
•Regulated 
•Complex shapes
•Non-equilibrium
•Non-linear
•Coupled

Images: Wikipedia



Genotype - Phenotype ?
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Computational biologyThe big question(s) in biologyModeling in biology

Individual interactions —> emergent dynamics ?

Cellular scale 
(Grill lab,MPI-CBG)

Eco-systems scale
Drescher lab (MPI-terMic)Tissue scale

(Tomancak lab, MPI-CBG)









Mathematical models for emergent dynamicsModeling in biology

•Spatial organisation
•Temporal dynamics
•Environmental influences
•Physics of interactions
•Regulatory mechanism
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Individual interactions —> emergent dynamics ?

Cellular scale 
(Grill lab,MPI-CBG)

Eco-systems scale
Drescher lab (MPIterMic)Tissue scale

(Tomancak lab, MPI-CBG)









Modeling emergent dynamics : PDE successModeling in biology

Experiment

Model Simulation

Prediction

Validation

NO

YES

Hypothesis testing and
Knowledge discovery

Gregor et al, PNAS 2005

J Prost et al, Nature 2015

L Manukyan et al, Nature 2017



Biological microscopy data ERA new 
paradigm

Microscopy data —> mathematical models PDE/ODEs

BIOLOGICAL DATA-SETS

• long-term imaging of single molecules -
fluorescence microscopy

• simultaneous measurements of multiple biosensors -
live cell microscopy

• development of entire organisms - lattice light-sheet 
microscopy, SPIMSelf-driving light sheet microscope

- MPI-CBG/CSBD

Experiment

Model Simulation

Prediction

Validation
YES

DATA
Hypothesis testing and
Knowledge discovery



Formal definition of data-driven PDE inferenceDefinitions

Parameters

Dynamics

State-variable
Generic non-linear, space time-dependent, parametric systems

Stochastic effects

Measurement model Measurement noise

State-variable measurements
Data and measurement model

, build ?Given data               and



CASE STUDY: 1D BURGERS EQUATION inferenceDesign 

1D Burgers Equation

N - #points sampled, p - dictionary size

Example dictionary for state variable u in one spatial dimension

Representative microscopy data
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The belief system - SPARSITYLiterature review

Sparse - regression

=

Least-squares formulation

• Linear-least square solution (N>p)

Sparse regression formulation

• NP hard - heuristic algorithms exist

Rudy et al, Sci Advances (2017)

Relaxed sparse regression form

• Lasso, Randmized Lasso, Elastic Net

H Schaeffer et al, Royal Society (2016)

data fitting term
Sparsity 



Success with sparse regression for PDE inferenceLiterature 
review

=

Rudy et al, Sci Advances (2017)



Barriers to cross for application to real experimental data Unsolved 
mysteries

• Parametric dependency of the algorithm with change in design, What is the right complexity 
parameter lambda ?

• Does the algorithm always give the right support ? Is this the best way to solve the hard L0

problem ?

• Derivative computation from noisy data

• Noise performance ( 1% )

• How can we compare between algorithms ? Can we guarantee consistency for varying design’s 
? 

data fitting term Sparsity 



Regularization paths for 1D BURGERS EQUATION inferenceparameter
dependence

IHT with debiasing (L0)LASSO (L1)

But which algorithm has the best recoverability?
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Best
sparsity-promoter Which sparsity promoter ?

k = # true components
p = dictionary size
STRidge parameter = 1e-5 
Polynomial differentiation

Numerical simulation of 1D Burgers on 128 space 
grid points using finite-difference

oracle lambda/s

IHT-D shows better performance in comparison to STRidge and LASSO

LASSO STRidge IHT-D

increase p

Success probability through oracle lambda for noise = 0-3%

N
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E
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MODEL 
SELECTION

Stability-based model selection for 1D BURGERS EQUATIONparameter
dependence

DATA

=
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=
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SUB-SAMPLING
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DESIGN
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Stability-based model selection for 1D BURGERS EQUATIONRobustness/
Consistency

Design N=200, p=20

Presenter
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Stability-based model selection for 3D Gray-Scott reaction
diffusion system

Robustness/
Consistency

Design N=400, p=69periodic boundary conditions



Achievability resultsRobustness/
Consistency

1D Burgers equation

3D Gray-scott equation



Experimental data PAR Proteins patterning in the Caenorhabditis elegans zygote 

Goehring et al, Science (2011)

a

c

b

Grill lab, MPI-CBG



Stability-based PDE inference for PAR system experimental dataStability based 
inference

Design N=500, p=20



Xenopus laevis

What kind of problems can be addressed with such methods ?Next steps

Tissue flows in Tribolium embryo
(Tomancak lab, MPI-CBG)

red flour beetle 
(Tribolium castaneum)

Can active gel mechanical models be
Inferred from the intensity and flow data ? Can we bridge the gap using data-driven 

coarse-grained modeling ?

Sebastian Fürthauer (Flatiron Institute,NY)

J Foster, eLife(2015)
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Stability-based PDE inference from limited noisy 
spatial-temporal data

data 

Stability based 
inference
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