
“High-Performance and Cloud Computing for Adaptive Binding Free Energy Calculations: A Case
Study"

Middleware Building Blocks for Workflow Systems

Shantenu Jha
Brookhaven National Laboratory and Rutgers University

http://radical.rutgers.edu

http://radical.rutgers.edu

2

3

4

5

6

7

8

9

10

11

12

13

14

 built upon RADICAL-Cybertools

15

16

17

• “All computational problems require workflows”

Some Statements From NYSDS19 ….

18

• “All computational problems require workflows”
• “Everyone has a different workflow”

Some Statements From NYSDS19 ….

19

• “All computational problems require workflows”
• “Everyone has a different workflow”
• “The optimization of the end-to-end performance

of a workflow is important (and different..)”

Some Statements From NYSDS19 ….

20

• “All computational problems require workflows”

• “Everyone has a different workflow”

• “The optimization of the end-to-end performance
of a workflow is important (and different..)”

• “Nothing tends so much to the advancement
of knowledge as the application of a new
instrument. The native intellectual powers of
people in different times are not so much the
causes of the different success of their labors, as
the peculiar nature of the means and artificial
resources in their possession” -- Humphrey Davy

Some Statements From NYSDS19 ….

21

• 1970s: “Business Workflows”, early 1990s: Workflow Management Coalition
• Late 1990’s (Early 2000s):

• Grid/Distributed workflows -- driven by LHC
• HPC Workflows (ASCI Program)

• 2001: MyGrid / MyExperiment emphasized provenance and reproducibility,
• Advances in workflow sharing, e.g., Taverna (cross-disciplinary WMS)
• Implementations rely upon changing technologies. Sustainability?

• 2014: DOE ASCR Workflow Modelling Program (Rich Carlson)
• 2019: Approximately 240 computational & data analysis Workflow Systems

• https://s.apache.org/ existing- workflow- systems
• Most workflow users don’t use a “formal” WMS, but “roll their own”
• Caveat: Diverse systems; complete - partial; extensible - standalone, …

A Historical Perspective on Workflows & Systems

https://s.apache.org/

● Initially workflow management systems provided end-to-end capabilities:
○ “Big Science”; software infrastructure was fragile, missing services
○ Run many times, for many users: amortisation of development overhead

● Workflows aren’t what they used to be
○ HTC important but other design points: automation, sophistication, …
○ The workflow is a manifestation of algorithmic & methodological innovation

● The infrastructure is not what it used to be either!
○ Python ecosystem, e.g., task distribution and coordination systems
○ Apache (big) data stack of analysis tools; container technologies ..

Perspective on Workflows & Systems

23

● Need sustainable ecosystem of both existing and new software components
from which tailored workflow systems can be composed

○ Lower barrier to integration of components

● Separate system and performance sensitive (e.g., advanced scheduling,
process / resource management etc.) from application facing components
○ Engineer for design points: Usability vs Functionality vs Scalability

● A systems approach which addresses both technical & social factors
○ Incentivize sharing and collective community capability
○ Enable expert contributions, while lowering the breadth of expertise

required of workflow system developers.

Status Quo: Workflows & Workflow Systems

24

• Historical Perspective on Workflows

• Ensemble Computational Model
• System & performance sensitive components versus user-facing component

• RADICAL-Cybertools: Building Blocks for Middleware for Workflow System
• Building Blocks: RADICAL-Pilot and Ensemble ToolKit (EnTK)
• Performance Challenges: Pilot-Abstraction and RADICAL-Pilot
• Software Challenges: Extensibility and Middleware Building Blocks

Outline

25

Ensemble Computational Model

26

● Many applications formulated as multiple
tasks, as opposed to large but single task.

● When the collective outcome of a set of
tasks is important, defined as ensemble:
○ Distinct from HTC, typically tasks are

I^4: (Independent, Idempotent,
Identical, Insensitive to order)

● Performance is mix of HPC and HTC
○ Challenges go beyond traditional

strong and weak scaling
○ Concurrent NE(t), total NE,

communication frequency ..
● Complexity of dependence resolution

typically less than workflows

27

● Ensemble-based methods necessary, but
not sufficient !

● Adaptive Ensemble-based Algorithms:
Intermediate data, determines next stages

Adaptive Ensemble Algorithms: Variation on a theme

28

● Ensemble-based methods necessary, but
not sufficient !

● Adaptive Ensemble-based Algorithms:
Intermediate data, determines next stages

● Adaptivity: How and What
○ Internal data used: Simulation

generated data used to determine
“optimal” adaptation

Adaptive Ensemble Algorithms: Variation on a theme

29

● Ensemble-based methods necessary, but
not sufficient !

● Adaptive Ensemble-based Algorithms:
Intermediate data, determines next stages

● Adaptivity: How and What
○ Internal data used: Simulation

generated data used to determine
“optimal” adaptation

○ External data used, e.g., experimental
or separate computational process.

○ What: Task parameter(s), order, count,
….

Adaptive Ensemble Algorithms: Variation on a theme

Ensemble Simulations at Scale: Challenges

30

● Resource Management for O(105-6) tasks --
each is independent executing program!
○ Exascale ~O(106-9)

Ensemble Simulations at Scale: Challenges

31

● Resource Management for O(105-6) tasks --
each is independent executing program!
○ Exascale ~O(106-9)

● Application requirements and resource
performance must be dynamic
○ Abstraction of static perf. is inadequate!
○ Implications on perf. portability & scaling

Ensemble Simulations at Scale: Challenges

32

● Resource Management for O(105-6) tasks --
each is independent executing program!
○ Exascale ~O(106-9)

● Application requirements and resource
performance must be dynamic
○ Abstraction of static perf. is inadequate!
○ Implications on perf. portability & scaling

● Execution Model of heterogeneous tasks on
heterogeneous and dynamic resources.
○ Early-binding: A->B->C->D
○ Late-binding: C->B->A->D

Ensemble Simulations at Scale: Challenges

33

● Resource Management for O(105-6) tasks --
each is independent executing program!
○ Exascale ~O(106-9)

● Application requirements and resource
performance must be dynamic
○ Abstraction of static perf. is inadequate!
○ Implications on perf. portability & scaling

● Execution Model of heterogeneous tasks on
heterogeneous and dynamic resources.
○ Early-binding: A->B->C->D
○ Late-binding: C->B->A->D

Ensemble Simulations at Scale: Challenges

34

● Resource Management for O(105-6) tasks --
each is independent executing program!
○ Exascale ~O(106-9)

● Application requirements and resource
performance must be dynamic
○ Abstraction of static perf. is inadequate!
○ Implications on perf. portability & scaling

● Execution Model of heterogeneous tasks on
heterogeneous and dynamic resources.

● Adaptive Ensemble Algorithms: Encoding
algorithms that express adaptivity, even
statistically (“approximately”)?
○ Managing interactions (coupling) between

tasks
○ …..

Outline

35

• Historical Perspective on Workflows

• Ensemble Computational Model
• System & performance sensitive components versus user-facing component

• Building Blocks for Middleware for Workflow System
• RADICAL-Cybertools: RADICAL-Pilot and Ensemble ToolKit (EnTK)
• Performance vs Extensibility

● Building Block Approach
○ Principled approach to the architectural design of middleware systems;
○ Applies traditional notion of modularity at the software systems level
○ Enable composability among independent software systems

● The four design principles:
○ Self-sufficient: Implements set of functionalities; not dependent on other blocks
○ Composable: Caller can compose functionalities from independent blocks.
○ Interoperable: Usable in diverse system without semantic modification
○ Extensible: Building block functionality and entities can be extended

Middleware Building Blocks for Workflow Systems

36

Middleware Building Blocks for Workflow Systems https://arxiv.org/abs/1903.10057

https://arxiv.org/abs/1903.10057

● A BB is a semantically well-defined independent software system, agnostic to
coordination, and communication patterns, and exposed via an API.
○ Stronger (stringent) property than modularity

● BB have well defined state, event, and error models
○ Reduce challenge of composability of independent components

● BB work stand-alone, or integrated with other BB, or with 3rd party software

● Architecturally building blocks require:
○ Stable interfaces & distinction between computation and composition
○ Conversion layers -- multiple representation of the same entity

Building Blocks (BB): Properties

37

Middleware Building Blocks for Workflow Systems https://arxiv.org/abs/1903.10057

https://arxiv.org/abs/1903.10057

Pilot Abstraction: Schematic

Resource A Resource B Resource C Resource D

User Application

S
ys

te
m

S

pa
ce

U
se

r
S

pa
ce

Resource Manager

Pilot-Job System
PoliciesPilot-Job Pilot-Job

A system that allows application-level control of acquired resources via a scheduling
overlay and a placeholder job.

○ Enables the fine-grained “slicing and dicing” of resources
○ Provides late-binding of workloads to resources

Pilot-Abstraction: Recap

• Run multiple tasks concurrently and
consecutively in a SINGLE batch job:

• Tasks are programs, i.e., executables,
not methods, functions, threads

• Tasks executed within the batch job
• Late binding:

• Tasks are NOT packaged into the
batch job before submission.

• Tasks are scheduled and then placed
within the batch job at runtime.

• Task and resource heterogeneity:
• Scheduling, placing and running

CPU/GPU/OpenMM/MPI tasks

...

...

Once completed, the CUs are
collected by the Pilot's output
staging component, are then passed
back to the unit manager's output
staging, and finally the
application is notified about
their completion.

RADICAL-Pilot: Resource Utilization Performance (Titan)

● Ensemble-Toolkit (EnTK): Promote ensembles
as a first-class programming and execution entity.
○ (i) Facilitate expression of ensemble based

applications, (ii) manage complexity of
resource acquisition, and (iii) task execution.

● Architecture:
○ User facing components (blue); Workflow

management components (purple); Workload
management components (red) via runtime
system (green)

● PST Programming Model:
○ Task: an abstraction of a computational process

and associated execution information
○ Stage: a set of tasks without dependencies,

which can be executed concurrently
○ Pipelines: a list of stages, where stage “i” can

be executed after stage “i−1”

EnTK: Building Block for Ensemble based Applications

● Many advances in workflows, but many challenges in workflow systems
○ Landscape is changing in many ways; also need focus on systems developers

● RADICAL-Cybertools BB for Ensemble Computational Model
○ RCT compatible with performance, extensibility and self-sufficient
○ Strong preference for functional specialization, as opposed to interoperability.

● Community BB for Workflow Systems as components of “Open Workflow” ?

● BB Approach: Promise but many open questions
○ Qualitative: Need more formally rigorous definitions building block? Differentiability?
○ Quantitative: Develop a hypothesis & validation of how/when/if BB are more scalable

and sustainable than monolithic approaches?
○ Best Practice: A formal understanding of granularity, type and how domain specific?

Summary

43

Thank you!

