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The context: microelectronics scaling

• It’s been a great ride…

❖ … but sequential programs don’t 

speed up each year like they used 
to in the “good old days.”


• Computation demand is growing!

❖ Massive amounts of data being 

collected by cheap, ubiquitous 
sensors.


❖ ~ 1.5B smartphones (with cameras) 
shipped in 2017.*


❖ ~ 0.75B monthly active users on 
Instagram in 2017.*


❖ Modern machine learning depends 
on massive amounts of data.

Data collected by: M. Horowitz, F. Labonte, O. Shacham, 
K. Olokutun, C. Batten; extrapolations by C. Moore

*Kleiner-Perkins 2018 Internet Trends
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Parallelism to the rescue?
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• Some algorithms just aren’t parallel 
❖ “Unfortunately, for most interesting 

algorithms, […] no architecture is scalable 
[…]” -- Agarwal et al. (CACM 1991) 

• But maybe we’re going about this the 
wrong way… 

• Physical systems, by their very nature, 
are massively parallel. 

• Can we build computing systems 
inspired by physical ones?
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Neuromorphic computing*

• Philosophical motivation

❖ Understand thought, consciousness  

• Biological motivation

❖ Understand the brain through engineering 

• Computational motivation

❖ Real-time vision, speech, pattern recognition, …

*term coined by Carver Mead

“Neuro” = neural 
“-morphic” = “having the shape, form, or structure”
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Neuromorphic systems

• Neurons: nodes in the network

• Axons: out-going links

• Dendrites: in-coming links

• Axons connect to dendrites at synapses

Ramón y Cajal, (1852-1934)

❖ Massively parallel, asynchronous computation 
❖ Many modern success stories (e.g. “deep networks”)
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Neuromorphics 101

• Basic computation

❖ Weighted input spikes are accumulated on a 

capacitor

❖ The neuron is implemented as a “threshold 

detector”

❖ On an output spike, the state of the neuron is 

reset (with a refractory period)


• ~1,000 to 10,000 synapses per neuron


• Classical approach 
❖ Mixed-signal design: analog neurons and 

synapse circuits, digital asynchronous 
communication
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A bit of recent history…

• Since the mid 1980

❖ specialized sensory systems

❖ specialized neural circuits


• Today: “general-purpose” architectures

SpiNNaker (Furber)

Neurogrid (Boahen)AER (Mead lab)

Sensory systems (retina, cochlea, etc.)
HiAER (Cauwenberghs)

FACETS (Heidelberg)

Braindrop (Boahen/Manohar)

Loihi (Intel)

TrueNorth (Modha/
Manohar)specific Biological structures

1990 2000 2010
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General purpose neuromorphic systems

• Core components

❖ Set of neurons + synapses from the 

network being modeled mapped to 
hardware


❖ Synapses can be made “superposable”

❖ Routing network handles spike 

communication between hardware 
elements


• Time-multiplexing

❖ Common hardware for computation

❖ Per-neuron/per-synapse state

synapse hardware

neuron 
hardware

synapse hardware

neuron 
hardware

synapse hardware

neuron 
hardware

routing
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Current state-of-the-art

• IBM/Cornell “TrueNorth” chip

❖ ~25 pJ/synaptic 

operation

❖ 65mW for 1M neurons, 

256M synapses


• 28nm technology


• QDI + bundled data 
asynchronous digital logic

• Intel “Loihi” chip

❖ ~24 pJ/synaptic 

operation

❖ Integrated on-chip 

learning support

❖ Microprocessors for 

management


• 14nm technology


• QDI + bundled data 
asynchronous digital logic

• Stanford/Yale “Braindrop”

❖ ~0.4 pJ/effective 

synaptic operation

❖ Support for “NEF” 

programming model


• 28nm FDSOI


• QDI digital logic, 
synchronous I/O, and analog 
circuits for neurons and 
synapses

2014 2018 2019
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Sampling of applications

• TrueNorth: image recognition

❖ CIFAR-100 dataset

‣ near state-of-the-art accuracy*, >1,500 frames/s,  200mW


❖ “Assembly language”: networks of neurons and interconnections 

• Loihi: lasso optimization

❖ ~50x lower energy and ~100x lower delay compared to low-power CPU

❖ “Assembly language”: networks of neurons and interconnections 

• Braindrop: does not use hand-crafted networks

❖ Assembly language: “neural engineering framework”

❖ Program analog circuits at a higher level of abstraction

❖ Most efficient platform for neural engineering framework
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Challenges: design and energy-efficiency

• Biological neural systems

❖ ~ 20 fJ/synaptic operation


• TrueNorth/Loihi

❖ ~ 20 pJ/synaptic operation


• How do we close the gap?

❖ Many, many proposals (new devices, materials, etc…) for better synapses and 

neurons

❖ Reality

‣ ~30-50% power is in spike communication/storage— Amdahl strikes again!

‣ Best case: reduce to 7-10 pJ, even after overcoming all the technical 

obstacles!

❖ Many proposals with significantly lower energy reported

‣ … but not for a system, just for small devices/components
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Challenges: design and energy-efficiency

• All the state-of-the-art solutions include

❖ … asynchronous digital communication

❖ … and plenty of asynchronous digital computation as well

❖ Unsupported by commercial tools! 

• Spike communication network

❖ Low latency needed, but low bandwidth

❖ Asynchronous design makes this easy to support


• We are developing a new open-source flow for asynchronous design

❖ DARPA’s Electronics Resurgence Initiative

❖ Goal: to make asynchronous design accessible
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Challenges: programmability and algorithms

• How do we best utilize this computation model?

❖ … in a general-purpose framework?


• What’s the right “programming language”?

• Current solutions


❖ Use learning/training and artificial neural networks

❖ Use hand-crafted solutions

❖ Time-averaged spike rate is used to represent a value

𝛜 (bits) Number of “spike slots” needed
𝛅=0.05 𝛅=0.10 𝛅=0.25

1 28 20 8
2 176 126 56
3 848 592 288
4 3670 2582 1248
5 15211 10731 5227

max
v2[0,1]

{Prv̂[|v � v̂| > ✏]}  �

|v � v̂|  ✏

sender receiver

How does the human brain compute?
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Summary

• Neuromorphic systems

❖ Biologically inspired, naturally parallel approach

❖ Various attempts to create programmable platforms


• Biological systems are an existence proof

❖ … we need to better understand how they compute


• Challenges

❖ What are efficient ways to compute in this framework?

❖ How do we reduce the cost of communication and storage?

❖ Is there a different abstraction, beyond simply emulating Biology?
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