Neuromorphic Computing a computer systems perspective

Rajit Manohar Computer Systems Lab Yale University http://csl.yale.edu/ http://avlsi.csl.yale.edu/

The context: microelectronics scaling

- It's been a great ride...
 - ... but sequential programs don't speed up each year like they used to in the "good old days."
- Computation demand is growing!
 - Massive amounts of data being collected by cheap, ubiquitous sensors.
 - ~ 1.5B smartphones (with cameras) shipped in 2017.*
 - ~ 0.75B monthly active users on Instagram in 2017.*
 - Modern machine learning depends on massive amounts of data.

Data collected by: M. Horowitz, F. Labonte, O. Shacham, K. Olokutun, C. Batten; extrapolations by C. Moore

Yale

Parallelism to the rescue?

- Some algorithms just aren't parallel
 - "Unfortunately, for most interesting algorithms, [...] no architecture is scalable [...]" -- Agarwal et al. (CACM 1991)
- But maybe we're going about this the wrong way...
- Physical systems, by their very nature, are massively parallel.
- Can we build computing systems
 inspired by physical ones?

Yale

Neuromorphic computing*

- Philosophical motivation
 - Understand thought, consciousness
- Biological motivation
 - Understand the brain through engineering
- Computational motivation
 - ✤ Real-time vision, speech, pattern recognition, …

"Neuro" = neural "-morphic" = "having the shape, form, or structure"

Neuromorphic systems

- Neurons: nodes in the network
- Axons: out-going links

Yale

- Dendrites: in-coming links
- Axons connect to dendrites at synapses

Ramón y Cajal, (1852-1934)

* Massively parallel, asynchronous computation

* Many modern success stories (e.g. "deep networks")

Neuromorphics 101

- Basic computation
 - Weighted input spikes are accumulated on a capacitor
 - The neuron is implemented as a "threshold detector"
 - On an output spike, the state of the neuron is reset (with a refractory period)
- ~1,000 to 10,000 synapses per neuron
- Classical approach

Yale

 Mixed-signal design: analog neurons and synapse circuits, digital asynchronous communication

A bit of recent history...

- Since the mid 1980
 - specialized sensory systems
 - specialized neural circuits
- Today: "general-purpose" architectures

General purpose neuromorphic systems

- Core components
 - Set of neurons + synapses from the network being modeled mapped to hardware
 - Synapses can be made "superposable"
 - Routing network handles spike communication between hardware elements
- Time-multiplexing

Vale

- Common hardware for computation
- Per-neuron/per-synapse state

Current state-of-the-art

2014

- IBM/Cornell "TrueNorth" chip
 - ~25 pJ/synaptic operation
 - 65mW for 1M neurons,
 256M synapses
- 28nm technology

Yale

 QDI + bundled data asynchronous digital logic

- Intel "Loihi" chip
 - ~24 pJ/synaptic operation
 - Integrated on-chip learning support
 - Microprocessors for management
- 14nm technology
- QDI + bundled data asynchronous digital logic

2019

- Stanford/Yale "Braindrop"
 - ~0.4 pJ/effective synaptic operation
 - Support for "NEF" programming model
- 28nm FDSOI
- QDI digital logic, synchronous I/O, and analog circuits for neurons and synapses

Sampling of applications

- TrueNorth: image recognition
 - CIFAR-100 dataset
 - near state-of-the-art accuracy*, >1,500 frames/s, 200mW
 - * "Assembly language": networks of neurons and interconnections
- Loihi: lasso optimization

ale

- ✤ ~50x lower energy and ~100x lower delay compared to low-power CPU
- * "Assembly language": networks of neurons and interconnections
- Braindrop: does not use hand-crafted networks
 - Assembly language: "neural engineering framework"
 - Program analog circuits at a higher level of abstraction
 - Most efficient platform for neural engineering framework

Challenges: design and energy-efficiency

- Biological neural systems
 - * ~ 20 fJ/synaptic operation
- TrueNorth/Loihi
 - * ~ 20 pJ/synaptic operation
- How do we close the gap?
 - Many, many proposals (new devices, materials, etc...) for better synapses and neurons
 - ✤ Reality

Male

- ~30-50% power is in spike communication/storage Amdahl strikes again!
 - Best case: reduce to 7-10 pJ, even after overcoming all the technical obstacles!
- Many proposals with significantly lower energy reported
 - ... but not for a system, just for small devices/components

Challenges: design and energy-efficiency

- All the state-of-the-art solutions include
 - ✤ … asynchronous digital communication
 - $\boldsymbol{\ast}$... and plenty of asynchronous digital computation as well
 - Unsupported by commercial tools!
- Spike communication network

Male

- Low latency needed, but low bandwidth
- Asynchronous design makes this easy to support
- We are developing a new open-source flow for asynchronous design
 - * DARPA's Electronics Resurgence Initiative
 - Goal: to make asynchronous design accessible

Challenges: programmability and algorithms

- How do we best utilize this computation model?
 - * ... in a general-purpose framework?
- What's the right "programming language"?
- Current solutions •
 - Use learning/training and artificial neural networks
 - Use hand-crafted solutions
 - Time-averaged spike rate is used to represent a value

$ v - \hat{v} \le \epsilon$	ϵ (bits)	Number of "spike slots" needed		
		δ =0.05	δ =0.10	δ =0.25
ender receiver	1	28	20	8
$\max_{v \in [0,1]} \{ \Pr_{\hat{v}}[v - \hat{v} > \epsilon] \} \le \delta$	2	176	126	56
	3	848	592	288
	4	3670	2582	1248
	5	15211	10731	5227

Vale

sender

How does the human brain compute?

Summary

- Neuromorphic systems
 - * Biologically inspired, naturally parallel approach
 - Various attempts to create programmable platforms
- Biological systems are an existence proof
 - * ... we need to better understand *how* they compute
- Challenges
 - What are efficient ways to compute in this framework?
 - How do we reduce the cost of communication and storage?
 - * Is there a *different abstraction*, beyond simply emulating Biology?

Acknowledgments

- Many, many members of the neuromorphic community
 - * Andreas Andreou, Gert Cauwenberghs, Tobi Delbruck, Shih-Chi Liu, ...
- Major project collaborators
 - * TrueNorth: Dharmendra Modha, John Arthur, Paul Merolla, ...
 - * Braindrop: Kwabena Boahen, Alex Neckar, Sam Folk, Ben Benjamin, ...
- Group members
 - Filipp Akopyan, Nabil Imam, Saber Moradi
- Sponsors
 - DARPA, ONR, AFRL

