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https://blogs.se.com/problem-solving

Team,

One of my personal resolutions for 2020 is to teach more about lean as we drive our

transformation. | will work to do that more often this year in my emails to you. For today’s note
I'm starting with problem solving because it is foundational to developing competitive advantage,
delivering for our customers and ultimately improving our performance over the long-term.


https://blogs.ge.com/problem-solving

Problem Solving is Engineering’s Core Competency
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Problem Solving

COMPOSITION

Problem
Question
Theory
Hypothesis

Observation

Measurement
INFORMATION Response

Insight

Solution
Understanding
Decision
Action
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Engineering’s core competency
Is Problem Solving

https://blogs.ce.com/problem-solvin

Team,

One of my personal resolutions for 2020 is to teach more about lean as we drive our
transformation. | will work to do that more often this year in my emails to you. For today’s note
I'm starting with problem solving because it is foundational to developing competitive advantage,
delivering for our customers and ultimately improving our performance over the long-term.

Problem Solving Modeling



https://blogs.ge.com/problem-solving

All decisions and actions employ models

FORMALIZATION

Whiteboard
LEGO™

Ya Scale
Prototype

Digital CAD

COMPREHENSION A RAW Explicit
g , Assumptions
Specificity
Uncertainty

© 2018 General EGEMNONARIIBLI G4 rights reserved



All decisions and actions employ models

COMPOSE PROBLEM

Inform & Advise Decision/Action
Answer Question
Explain Observation
Insight Discovery

COMPREHEND SOLUTION

Problem Modeled
Mapped Decision Space
Trade-off Analysis

© 2018 General EGEMNONARIIBLI G4 rights reserved

* Traceability
* Reproducibility

* Verification & Validation
* Confidence Bounds
* Assumptions, Unknowns

& Sources of Error




Scientific method

Math Experimentation

EMPIRICAL EDISONIAN

EXPERIMENTAL $$$$ Testing & Measurement
OBSERVATION

THEORETICAL
MODEL
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Modern practice of scientific method

Math Simulation  Experimentation

MATH SIMULATION MEASUREMENT

© 2018 General Electric Company - All rights reserved




Advancing the Scientific Method

/ DESIGN <\
\b TEST ./

Theory Simulation Experiment
* Bypass physical limitations
» Synthetic universal properties
* Only “digital waste”

EXPERIMENT COMPUTATIONAL

THEORY  SIMULATION $100’s of MM MODEL?
PER YEAR AT GE I'M SKEPTICAL!

© 2018 General Electric Company - All rights reserved



CRITICAL INFRASTRUCTURE

C DESIGN >
TEST
Justified Model Skepticism: Garbage IN/Garbage OUT

L .GE Legacy Products:
are Highly Complex &
* High Value Assets,
» have Safety-Critical Components,

* High-Consequence Downtime,
* and Long Field Life

11
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Physical validation is critical

“RIG" TEST DIGITAL TWIN

Experimental
Measurement

Targeted Field
Sampling

VERIFICATION &
VALIDATION

CALIBRATION &

: UNCERTAINTY
QUANTIFICATION
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Engineering’s core competency
Is Problem Solving

roblem-solvin

Team,

One of my personal resolutions for 2020 is to teach more about lean as we drive our
transformation. | will work to do that more often this year in my emails to you. For today’s note
I'm starting with problem solving because it is foundational to developing competitive advantage,
delivering for our customers and ultimately improving our performance over the long-term.

Problem Solving critically relies upon Modeling
(the problem, the solution and the process in between)

Modeling Computational Methods



https://blogs.ge.com/problem-solving

Computational model as scientific instrument

MICROSCOPE MACROSCOPE CAMPAIGN

Interrogate extreme detail Perceive system-wide interactions Explore vast alternatives

ég:::::i:}:;
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i
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:
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Modeling & Simulation (Mod/Sim) well-established at GE / GE Research

7 ® X 1 &

Computational Gas Wind 0Oil &
. > . . » Turbines scanners EIEIES turbines Gas
Science & Engineering

Additive

Modeling (Form & Function)
Geometric Dimensioning & Tolerancing
Physical Model & Material Properties
Environment & Operation Conditions

Simulation (Credibility & Confidence) =

Verification & Validation

Repeatability & Empirical Calibration
Numerical Assumptions & Effects
Uncertainty Quantification

Estimation & Assumption Propagation
Parametric Sensitivity Analyses

© 2019, General Electric Company. All Rights Reserved. © 2020 General El=tiri Compars - 8l rights reserved



CRITICAL SUPPORT INFRASTRUCTURE FOR MODELING

SCIENCE & ENGINEERING
INTRUMENTATION

@ * Traceability

* Reproducibility
TECHNICAL & REGULATORY  Verification & Validation
PROCESSES :

* Confidence Bounds
* Assumptions, Unknowns
& Sources of Error

© 2018 General Electric Company - All rights reserved



Co-Design: A Fugue of Expertise toward Breakthrough Impact

SCIENCE & ENGINEERING
/l\  Domain Expertise
» Representation Fidelity
* Composition & Comprehension

Solver

BREAKTHROUGH

/ Hardware Performance
Architect Optimizer

SYSTEMS ENGINEERING
 Vendor Partnerships
* Procurement & Lifecycle
* Infrastructure Tuning

COMPUTATIONAL SCIENCE

* Numerical Methods & Confidence
Bounds

* Algorithms & Data Structures
* Productivity & Usability

\__/
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Product Lifecycle

Engineering Design  Product Definition Supply Chain Manufacturing Assembly Field Service

Conceive = Design = Make = Deliver - Use - Maintain



Brief overview on a core engineering practice at GE:
Design of Blades in Turbomachinery

High-pressure High-pressure
Fan COMpressor turbine

High-pressure
shaft

- [\] .
: T == i
it [T H Objectives:
’Lllll”u.'_ 1. Competitive performance of product
P < 2. Reliability of product
Low-pressure 3. Cost to design product
Lomrossare o o buston Lowbressure Nzzi 4. Cost to make product
compressor chamber. turbine 5. Operational cost of product

Blde (Airfoil)




Brief overview on a core engineering practice at GE:
Design of Blades in Turbomachinery

High-pressure High-pressure
Fan COMpressor turbine

High-pressure
shaft

- [\] .
— R H
21 S Objectives: Ideally:
’Lllll”u.'_ 1. Performance 4 Drives Sales (Value for $)
P < 2. Reliability 1 Certification on 15t Test
Low-pressure 3. Design Cost ¥ No rework, built to spec+
Lomrossare o o buston Lowbressure Nzzi 4. Manufacturing Cost ¥ No waste, rework, inventory
compressor chamber . turbine 5. Operating/Service Cost® Value for $ for customer + GE

Blde (Airfoil)




Turbine Airfoil Design (circa 1980)

- ~\
High-pressure High-pressure m
Fan compressar turbine Approx blade locations [ Dlade Design
High-pressure Pressure ratios and flows Steady load
shaft Cressure forces eany $
B 1\ — Iot running clearances ' “hﬁ!:iﬁ’__{
i : I Blnde design: tuis, b
—F camber, stagper, shape,
~ i
i fe umber, sngle
: 'T N \Jnner and outer flow pathy n&ﬂg‘
Ll“ll “J..A_ Tolerances
2 Stackup/Clearan
‘ Geometry delails
Lﬁwf;pressure [ Tﬂ!’i_p-ﬂl‘ﬂlllm
Low-pressure Combustion Low-pressure MNozzle ﬂnws i
compressor chamber turbine ) . 1
| Meshanical Analysi} Stiffness, ducility Tane g
mﬁ‘?ﬁﬂ I Tuciial expansi 1'.':.'|.1tlg:rmI mf-.ucl
ections Strength, density Feeds & s |
Figure 2. Informal turbine blade design data flow.
Blade (Airfoil)
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More Recent Manufacturing Process:
Still lots of focus on parts.\

ATQN

oooooooooooo

@ '@ Then put back together in Supply
chain MANUALLY

Data broken into

PlECES, and ...

Engine designed

DIGITALLY, but ..

© 2019 Genera | HHedtrN ONrBRHBLICH rights reserved



And for part design:
discipline-by-discipline analyses

Aerodynamics

Design Engineering

Fluid flow & acoustics

Internal + external design

Heat
Transfer

Each technical stakeholder goes through:

TSI e )

________________________________________________________________________

Internal flow model

Stress

Metal

Temperature

23
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Iterative Design Cycle

Design Engineering

Manufacturing
(Supply Chain)

— _/
~
Each technical stakeholder goes through: Design hand-offs across disciplines of expertise
R D
________________________________________________________________________ u )
~~

“Final Design” handoff to Manufacturing

24
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Example of Iterative Design Cycle:

Each engineering domain expert designs to requirements for their discipline.

Design Engineering

Disci

Aero

Thermal

Mechanical

Cost

N

Conceptual

o

Preliminary

&

g

Manufacturing
(Supply Chain)

Detailed

(%)

Can

>
|

mmm Deotqi| te—
) Speed m—)

Ideally: Flow of progress always moves forward (no “rework”)
Fully Integrated data representation
Common tools for all levels of detail (trade off precision and speed without impacting accuracy)
Design flaws (such as contradictions across stakeholder disciplines) minimally reverse progress

© 2019 General H&dtrNONrBRHBLIEH rights reserved
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Example of Iterative Design Cycle:

Re-design (re-work) upon discovering the current design does not meet a key requirement.

N

Design Engineering Disci
Aero Thermal Mechanical | Performance Cost
Conceptual , \6\ {f# ki}\

g

Manufacturing
(Supply Chain)

Re-lteration

Preliminary & &
|

Detailed £ &

>
|

mmm Deotqi| te—
) Speed m—)

Fully Integrated data representation

Ideally: Flow of progress atways-mevesferward-(re “rework”)

Common tools for all levels of detail (trade off precision and speed without impacting accuracy)
Design flaws (such as contradictions across stakeholder disciplines) minimally reverse progress

© 2019 General H&dtrNONrBRHBLIEH rights reserved
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Iterative Design-to-Manufacturing Cycle

Parts not feasibly/reliably/cost-effectively manufactured may also kick back to re-work.

Design Engineering

Performance

Manufacturing
(Supply Chain)

Each technical st oes through:

e

1
R o
|

Re-lteration

SEPARATE PDE
ANALYSIS
3D MoDELs

MANUAL REPLICATION
CID 1s RE-WORK FORALL

2D DRAWING

3D MoDEL “LEGAL SOURCE OF TRUTH"

Manufacturing
Execution

27
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Digital Thread & “The Shadow of Design”

70%

\‘:h;)c;?ls the biggest ”it iS NOW WidEly accepted that
| over 70% of the final product costs are
determined during design”

Influence %

Product Design for Manufacture and Assembly, Third Edition ‘“ )
By G. Boothroyd, P. Dewhurst, V. A. Knight ‘

. cf £9%,
0% -

k ! Overhead
ik ¥ : © Labor
L 1/
z ‘é.w‘ﬁlalvrinl

5% -

““

B design — Drive Variable Cost Productivity (VCP)

\p*“ by
/ pushing cost visibility into Design
FIGURE 1.5

Who casts the biggest shadow? (Adapted from Munro and Associates, Inc.)

. GE Proprietary Information
For Internal Use Only
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GE Impact leveraging Leadership Computing



High-end modeling - Moment of truth

Will we see
something different?

QO

Compare:
Best Internal
Modeling
Capability

Will it be
useful?

GE Aviation LEAP
Unsteady CFD: Strut wake effects
GE Tacoma RANS solver

.



Never before seen

Prior State of

the Art:
Steady Analysis
(GE Internal HPC)

* Unobservable physically
* Relevant to engineering design
« 2012 IDC award:

o

THE INNOVATION EXCELLENCE AWARD

For the Qutstanding Application of HPC Computing for Business and Scientific Achievements

o v P

On ORNL Jaguar Cray XT5 (2010)

Preliminary Result . : ; Final Result
Unsteady Analysis ' ) Unsteady Analysis
(with Uniform Inlet) A - (with wake from strut)

© 2018 General Electric Company - All rights reserved



Software: Simulation and Modeling

Attached flow - good air flow control

and high efficiency Materlal DeSIgn

Dynamic Flows

Heat

Acoustics
Fuel Burn
Emissions

Old Design “Straight Airfoil”

Mechanical Properties

iy .

Y

20000
$J

AR
e Metal alloy wear and tear
e “Crash tests” (bird strike)

© 2018 General EGEMNONARIIBLI G4 rights reserved



4 Computational Modeling Goals )

1. Assert a Region of Competence for a model
where its use is numerically stable (ROBUSTNESS)

. with minimal simplifying constraints (REALISM) and
e O s a u rl quantifiably bounds uncertainties (CONFIDENCE)

of results with validated predictive ACCURACY.

Computational

models must be trusted and understood

a.k.a. Virtual / Digital / Computational / Numerical Modeling 2. Implement the model with an Architecture that
Realism performs capably on HPC hardware (SCALABILITY)

Criticality and is interoperable and extensible (FLEXIBILITY).

> All problem-solving employs models 3. Design model use and software management

P to promote efficient workflows (PRODUCTIVITY),
» Some problems necessarily must be modeled FIE“Klbl ||t'l5‘4r ACC Llr'a(:'f reduce waste and improve quality (MATURITY).
computationally \ )

Critique

» Garbage-in = Garbage-out

> To advise and inform decision-making, Scalabil |t1h|r Confidence

Crucial
» Computationally Literate Workforce & Leadership

> Hardware & Software Infrastructure & Ecosystem Matu ﬂt\f | Robustness

» Facilities, Processes and Culture for Verification & Validation

LEAN’s “Deadly Sins” Prod uctivity
» Reusable Virtualized Assets vs. Inventory/WIP and Overproduction
» Automation & Visibility to increase Productivity and reduce Waste / Defects / Rework
» Digital Thread Workflow vs. Motion/Waiting dependencies/hand-offs and Underused Talent

GE Research 33
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Co-Design Web: Goals

realsm  Model Competence Realism Completeness of ...
...................................................... ,
Flexibility Accuracy Accuracy Valldlty Wlthln'“ o M.Odel S
............................................................................................... Reglon Of
e e D o L Competence
Robustness  Stability & Assertability of...
Scalability Confidence
S el Cognitive & Waste Reduction
G Maturity Augmentation & Architecture Quality
< 4 _— S e e
= Scalability Capable & High Performance
SN T
roductivi - Architecture
Cognitive Augmentation " Flexibility Modular, Extensible,
Interoperable
@ GE Research 34
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Co-Design Web: Measurement

Reajism 0 = Undesirable (Absent) @m |

Flexibility Accuracy 1 = Minimally present

2 = Documented / Basic
3 = Managed & Consistent / Addressed
4 = Systemic & Repeatable / Advanced
5 = Best in Class / State of the Art

»Confidence

Scalability<

e Bad

Good

Maturity Robustness

\/
PrOductiVity Productivity

@ GE Research 35
© 2020, GeREMNONIBEBIKECompany



Challenges



Challenge: Legacy




Legacy: Strength becomes Limitation =

v’ Experience

v Confidence

v Regulatory acceptance

** Sunk investments deter re-investment
» Obsolete functionality / infrastructure
» Cost/complexity for backward compatibility

» Hinders innovation / adoption of novel practices






Data Lake Storage & Services Infrastructure

DIGITAL THREAD CENTRALIZATION/FEDERATION OF LEGACY DATA / SOFTWARE

Data Lake

‘amazon

" webservices™

CRM data

le BEL. salesforce

RSERP data FTY ORACLE ..
PLM data Zenovia Cenren .-
MES data L56) SIEMENS
Simulation data ANSYS €A\ MathWorks: - + ML data €* theano ...
i Test data namionaL - AN KEYSIGHT
MRO data... @ EEE

-GE NON-PUBLIC- October 22’ 0



Data Lake Storage & Services Infrastructure

DIGITAL THREAD SOURCES FROM LEGACY WORKFLOWS / PROCESSES

Data Lake

amazon
i webservices™

Simulation data ... + ML data
Test data
MRO data...

Silo'd tasks ™
Manual hand-offs
Rework loops

-GE NON-PUBLIC- October 22, .




Data Lake Storage & Services Infrastructure

INDEXING, SEARCH, REPORTING, PROTECTION & COMPLIANCE

i cloud
FOEN B o ity

LM

alliance®
¢ Data L ook’
' w4 & ‘A tH'}
I 1 ‘1‘: |—"—-é‘ (e A
" (o 4 2
‘amazon

webservices™

¢

d

PLM data

, MES data
——— L Simulation data ... + ML data
Silo’'d tasks Test data

Manual hand-offs MRO data...

Rework loops

‘ 42
-GE NON-PUBLIC- October 22,




CHALLENGE: VICIOUS CYCLE OF DATA DEGRADATION

Redundancy,
Inconsistency

&
Obsolescence

Irrelevant,
Untrusted &
Tedious to Fix

(Poorly) Independently
Document & Recreate
submit (Under Own Control)
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Opportunity: Decision Provenance - akin to “Design Rationale” concept

DECISIONS AS “PRIMARY INDEX” TO UNDERLYING DATA/ANALYSES

At time of DECISION, Who  Proposed, Reviewed, Approved, Tested?

explicitly capture into knowledge steward: What  Alternatives were considered?

Known Unknowns (environmental, economic, ...)

prov-e-nance Why Assumptions (limitations, dependencies, technology, ...)
/'pravensns/ 4 Evaluation Criteria & relative weights

nowur
noun: provenance

(and then link to underlying references):

the place of origin or earliest known history of something.
"an orange rug of Iranian provenance”
synonyms: ongin, source, place of origin; More

-‘ the beginning of something's existence; something's origin. . .o
“they try to understand the whele universe, its provenance and fate” HOW Da.ta ana|yseS Su ppOI’tIng the deC|S|On
. ra: LE»:ID:%ﬂ D;i%ew;rs::la%?:giwmk of art or an antique, used as a guide to authenticity ar quality. MOde“ng methOdS app“ed (+ Inte”ectual debt)
"the manuscript has a distinguished provenance' PhyS|Ca| prOCESS fOI’ measurement (Gage R&R )

Future footnotes: exemplar practices / learnings
and opportunities to improve (given more time/budget/capability)

-GE NON-PUBLIC- 45



Challenge: Machine Learning Reference Data

SUFFICIENCY FOR TRAINING

Complexity of Response Hyper-surfaces Sparsity vs. Characterization Complexity

* Non-Ergodic synthetic data
. Eigenfrequency experimental data
: . data fusion
* Discontinuity
* Stochasticity « Dimensionality selection & hidden variables
validate

labeling of data

-GE NON-PUBLIC- October 22’ *



Challenge: Metrics and Incentives (financial recognition) / GAAP

NG
ENGINEER!
o D PRODUCTIVITY

EPORT

| COMPUTAT\ON:;.;(:i:‘(:: .‘QNAN
. " i | WARE SU
Engines of Productivity Instruments for Insight ff:gssm e SUST

NGES WORKSHOP R

Return on Labor Product Diversity & Novelty C S E S = P

Profit Margins Yields & Production Capacity t
Supply Chain & Distribution Efficiency ~ Data-driven decisions | — 20 \ 5
Design Exploration Trade-off Analysis \q ( W 5 ’N 6 ,

Agility to Seize Opportunities Perception of Previously Unseen Q CtO c

Costs of Overhead & Rework Operational Exposure

Time to Market Uncertainty & Risk
Equipment Downtime Contradictions

Response Time to Fix Problems Noise obscuring Main Effect

Automation of repetitive tasks/tests Model unmeasurable effects
Faster than real time simulation/analysis Isolate effects in complex interactions |
Digitally replicate studied resources Observe without physical interference |
Concurrent studies on parallel system “Big Data" analysis and synthesis

Suggested candidate metrics as captured in Industry/Manufacturing chapter of CSESSP Report (October, 2015)

NITRD Computational Science and Engineering Software Sustainability and Productivity Challenges Workshop 47
5/ National Science Foundation, Networking & Information Technology Research & Development, Dept. of Defense, Dept. of Energy


https://www.nitrd.gov/pubs/CSESSPWorkshopReport.pdf

Challenge: Incentives (cross-silo recognition / “True Digital Thread”)

Engines of Productivity Instruments for Insight

I o o e Even if metric is accepted - who gets the credit?

Costs of Overhead & Rework Operational Exposure
Time to Market Uncertainty & Risk
Equipment Downtime Contradictions

RSPk R an s Organizational & Cultural Challenges

Automation of repetitive tasks/tests Model unmeasurable effects

Faster than real time simulation/analysis Isolate effects in complex interactions
Digitally replicate studied resources Observe without physical interference
Concurrent studies on parallel system “Big Data” analysis and synthesis

Engineering Design  Product Definition Supply Chain Manufacturing Assembly Field Service

© 2018 General EGEMNQANARIIBLIGH rights reserved



BEYOND EXPLAINABILITY: UNDERSTANDING

Intellectual Debt: With Great Power Comes Great Ignorance

Jonathan Zittrain, Jul 24
This kind of discovery — answers first, explanations later — | call “intellectual debt.”

We gain insight into what works without knowing why it works. We can put that insight to use immediately, and then tell
ourselves we'll figure out the details later [debt to be paid in the future].

We are borrowing as a society, rather than individually; artificial intelligence and specifically, machine learning are [being
applied] to a seemingly unlimited number of new areas of inquiry. The distinct promise of machine learning lies in
suggesting answers to fuzzy, open-ended questions by identifying patterns and making predictions.

1.When we don’t know how something works, it becomes hard to predict how well it will adjust to
Technical debt arises when systems are unusual situations.
tweaked hastily, catering to an 2. Machine learning models are becoming pervasive, compounding black box opacity:
immediate need to save money or a. oracular answers to single problems can generate consistently helpful results, but

implement a new feature, while b. as Al systems gather and ingest data, they produce data of their own, then consumed by still other Al systems.
increasing long-term complexity. [...] 3.We need to know our exposure: we should invest in a collective intellectual debt balance sheet.
When something stops working, this We must keep track of just where we’ve plugged in the answers
technical debt often needs to be paid 4. Traditional debt shifts control: from borrower to lender, and from future to past, as later decisions are
down as an aggravating lump suy constrained by earlier bargains. Answers without theory — intellectual debt — also will shift control in

subtle ways. [...] A world of knowledge without understanding becomes, to those of us living in it, a

world without discernible cause and effect, and thus a world where we might become dependent on
our own digital concierges to tell us what to do and when. 49
5. Without the theory, we |gse the autonomy that comes from knowing what we don’t know.


https://blog.usejournal.com/from-technical-debt-to-intellectual-debt-in-ai-e05ac56a502c
https://blog.usejournal.com/@zittrain?source=post_page---------------------------
https://blog.usejournal.com/from-technical-debt-to-intellectual-debt-in-ai-e05ac56a502c?source=post_page---------------------------

Challenge: Foundational Limits of Al/ML Opportunity: [Science of {Al/ML] for Science}

n/IL/AI methods do not solve all problems: Al/ML Solutions exploit underlying sciences Credit: Nagi Rao \
some are simply too complex for machines *  ensure solvability: computable, learnable, expressible, provable raons@ornl_gov
* detection of zero-day computer viruses *  sharpen Al/ML solutions: structure and constraints from laws O
* resilient codes to arbitrary hardware failures AK
» Inference of chaotic dynamics of TCP flows Science Of A|/M L for Science RIDGE
R National Laboratory
_ (computer sciences) -
NOt M L SOI"a ble * [ \ \ The reasoning is as follows: consider Al/ML
Classes of problems with properties at limits: 3 | bl . : method that attempts to discover laws
o P ofe . . P p .rs J\./Jl_. 1015 earn-a. € (domaln SCIenCES) (truths) from data as being attempted in
CompUtablIlty limit (U ndecidabil |ty) v . finite samples several science areas. An explanation of
Church's proof that Hilbert's Entscheidungsproblem is unsolvable, and yClence Vapnik- truth is proof. But Gédel's theorem (a
Turing's theorem that there is no algorithm to solve the halting problem. computable Valiant- S noe version) shows that we cannot mechanically
Turing Limit Devroye computational and pr.ovide pfoofs f.or all truths —so some truths
» Expressability limit (cannot state into formalism) —nm Limit analytical problems will remain undiscovered by ML/Al method.

Tarski's undefinability theorem on the formal undefinability of truth

The implications could be quite deep: one

e .. .. ;- sharpened can write ML codes that to try to solve this
* Provability limit (Godel’s incompleteness theorems) Al/MLsolutions problem but its output would be either

for science

incomplete or unsound or both — if applied
without care, this ML solution could
potentially output “pseudo untrue” laws.

I“A“.E{,TICLES ?illrgéhinc intelligence y expressible, provable

Corrected: Author Correction Ta rSki' Gadel Limit

Learnability can be undecidable Physical-Abstract Hybrid Laws

ShaiBen-David', Pavel Hrubes?, Shay Moran®, Amir Shpilka* and Amir Yehudayoff©** Iead to Shal’pened AI/M L o

» Physical, abstract, hybrid laws

 Learnability limit (can only resolve problem by choosing an axiomatic universe within which it is applicable .
* physical systems

therefore solution is not applicable to data outside that universe —i.e. sampling from separate infinities) - cyber infrastructures
(Vapnik <|earnability> / Valiant <learnability-paper / PPT> / Devroye <A Probabilistic Theory of Pattern Recognition> - esp. slow rates of convergence — chapter 7) » cyber-physical systems

E.g., unbounded deviation from Bayes’, infinite Vapnik-Chervonenkis dimension, ...

» Customized Al/ML solutions may exploit
(See also: Five Machine Learning Paradoxes that will Change the Way You Think About Data )  structure

» relationships, correlations
» constraints

Qpply Characterization: Analytical and mathematical characterizations of limits and their interpretation within application/domain context /

-GE NON-PUBLIC-


https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Tarski%27s_undefinability_theorem
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://users.soe.ucsc.edu/~manfred/pubs/C5.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf
https://www.cs.cmu.edu/~clegoues/docs/slides/learnable.pdf
http://www.szit.bme.hu/~gyorfi/pbook.pdf
A.	Five Machine Learning Paradoxes that will Change the Way You Think About Data
mailto:raons@ornl.gov

Summary



Engineering’s core competency
is Problem Solving

Problem Solving critically relies upon Modeling
(the problem, the solution and the process in between)

Modeling critically relies upon Computational Methods

(as an engine for scale, productivity, consistency and capability)

Vieael lViaturity, Co-Design

<)

Realism Model Competence

Flexibility

Scalability

Maturity

Productivity
Cognitive Augmentation

GE engagement with Government Leadership Computing

Industry Council Chair

GE Research CIO Dave Kepczynski
ELCP

Rese
https://www.exascaleproject.org/team/dave-ke

DAVE KEPCZYNSKI

Chair, ECP Indu:

© 2019, General Electric Company. All Rights Reserved.
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R .. Model’s
Accuracy Region of
Confidence Error boundmg Wlthm Competence

Robustness Stablltty & Assertability of
onfidence
C Cognitive & Waste Reduction

Maturity Augmentation & Architecture Quality

Robustness

Co-Design: Landing Opportunities from Blue Sky
Aspirations

SCIENCE & ENGINEERING
P : * Domain Expertise
ovwn‘ru;\% * Representation Fidelity

* Composition & Comprehension

Problem
Solver
PUTATI0, & SCALABY,
(/0\'\ 4/4( % » £
:ar:ware : Performance
rchitect imi
SYSTEMS Qptinizec COMPUTATIONAL
ENGINEERING iV SCIENCE
= Vendor Partnerships CAPABlL\T\ES y %GME "\1\0‘; * Numerical Methods &
* Procurement & Lifecycle | L Confidence Bounds
= Infrastructure Tuning o * Algorithms & Data Structures
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Engines of Productivity Instruments for Insight

Return on Labor Product Diversity & Novelty
Profit Margins Yields & Production Capacity
Supply Chain & Distribution Efficiency Data-driven decisions

Design Exploration Trade-off Analysis

Agility to Seize Opportunities Perception of Previously Unseen

Costs of Overhead & Rework Operational Exposure

Time to Market Uncertainty & Risk
Equipment Downtime Contradictions

Response Time to Fix Problems Noise obscuring Main Effect

Automation of repetitive tasks/tests Model unmeasurable effects

Faster than real time simulation/analysis Isolate effects in complex interactions
Digitally replicate studied resources Observe without physical interference
Concurrent studies on parallel system “Big Data” analysis and synthesis

Metrics & Incentives

Machine Learning Reference Data

SUFFICIENCY FOR TRAINING
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