
© 2018 General Electric Company - All rights reserved-GE NON-PUBLIC-



2

Tue 2/18/2020 8:30 AM

Engineering’s core competency
is Problem Solving

https://blogs.ge.com/problem-solving

https://blogs.ge.com/problem-solving
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Problem Solving is Engineering’s Core Competency

PROBLEM

SOLUTION
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Problem Solving

COMPOSITION

COMPREHENSION

INFORMATION

Problem
Question
Theory
Hypothesis

Solution
Understanding
Decision
Action

Observation
Measurement
Response
Insight
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Engineering’s core competency
is Problem Solving

Problem Solving critically relies upon Modeling 
(the problem, the solution and the process in between)

https://blogs.ge.com/problem-solving

https://blogs.ge.com/problem-solving
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COMPREHENSION

All decisions and actions employ models

EXTERNALIZE FORMALIZATION

M E N T A L  M O D E L

MIND

MODEL
• Whiteboard

• LEGO™

• ¼ Scale 

Prototype

• Digital CAD

Explicit

Assumptions

Specificity

Uncertainty
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M E N T A L  M O D E L

EXTERNALIZE

SHAREABLE
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Problem Modeled

Mapped Decision Space

Trade-off Analysis

Inform & Advise Decision/Action

Answer Question

Explain Observation 

Insight Discovery

COMPREHEND SOLUTION

All decisions and actions employ models

COMPOSE PROBLEM

MIND

MODEL

• Traceability

• Reproducibility

• Verification & Validation

• Confidence Bounds

• Assumptions, Unknowns 

& Sources of Error
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T H E O R E T I C A L

M O D E L

E M P I R I C A L  

E X P E R I M E N T A L

O B S E R V A T I O N

Scientific method

THEORY

TEST

ExperimentationMath

E D I S O N I A N

© 2018 General Electric Company - All rights reserved
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$$$$ Testing & Measurement
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M A T H M E A S U R E M E N T

THEORY

TEST

ExperimentationMath

Modern practice of scientific method

Simulation

S I M U L A T I O N

© 2018 General Electric Company - All rights reserved
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T H E O R Y

E X P E R I M E N T

$ 1 0 0 ’ s  o f  M M

P E R  Y E A R  A T  G E

DESIGN

TEST

ExperimentTheory Simulation

S I M U L A T I O N

Advancing the Scientific Method

• Bypass physical limitations

• Synthetic universal properties

• Only “digital waste”

C O M P U T A T I O N A L  

M O D E L ?

I ’ M  S K E P T I C A L !

© 2018 General Electric Company - All rights reserved
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CRITICAL INFRASTRUCTURE

Justified Model Skepticism: Garbage IN/Garbage OUT

DESIGN

TEST

GE Legacy Products:
• are Highly Complex &

• High Value Assets,

• have Safety-Critical Components,

• High-Consequence Downtime,

• and Long Field Life

© 2018 General Electric Company - All rights reserved
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Physical validation is critical

D I G I T A L  T W I N“ R I G ”  T E S T

V E R I F I C A T I O N  &  

V A L I D A T I O N

C A L I B R A T I O N  &  

U N C E R T A I N T Y  

Q U A N T I F I C A T I O N

Experimental

Measurement

Targeted Field

Sampling

© 2018 General Electric Company - All rights reserved
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Engineering’s core competency
is Problem Solving

Problem Solving critically relies upon Modeling 
(the problem, the solution and the process in between)

Modeling critically relies upon Computational Methods 
(as an engine for scale, productivity, consistency and capability)

https://blogs.ge.com/problem-solving

https://blogs.ge.com/problem-solving
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M I C R O S C O P E
Interrogate extreme detail

M A C R O S C O P E
Perceive system-wide interactions

Computational model as scientific instrument

C A M P A I G N
Explore vast alternatives

14
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Modeling & Simulation (Mod/Sim) well-established at GE / GE Research

Modeling (Form & Function)
Geometric Dimensioning & Tolerancing
Physical Model & Material Properties
Environment & Operation Conditions

Simulation (Credibility & Confidence)
Verification & Validation
Repeatability & Empirical Calibration
Numerical Assumptions & Effects
Uncertainty Quantification
Estimation & Assumption Propagation
Parametric Sensitivity Analyses

Computational

Science & Engineering

© 2019, General Electric Company. All Rights Reserved.
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CRITICAL SUPPORT INFRASTRUCTURE FOR MODELING

C O M P U T A T I O N A L  H A R D W A R E

S C I E N C E  &  E N G I N E E R I N G

I N T R U M E N T A T I O N

© 2018 General Electric Company - All rights reserved
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MODEL

• Traceability

• Reproducibility

• Verification & Validation

• Confidence Bounds

• Assumptions, Unknowns 

& Sources of Error

S I M U L A T I O N  &  A N A L Y S I S  E C O S Y S T E M

T E C H N I C A L  &  R E G U L A T O R Y

P R O C E S S E S
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Co-Design: A Fugue of Expertise toward Breakthrough Impact 

17

SYSTEMS ENGINEERING

• Vendor Partnerships

• Procurement & Lifecycle

• Infrastructure Tuning

COMPUTATIONAL SCIENCE

• Numerical Methods & Confidence 

Bounds

• Algorithms & Data Structures

• Productivity & Usability

17

SCIENCE & ENGINEERING

• Domain Expertise

• Representation Fidelity

• Composition & Comprehension



Product Lifecycle

Conceive →Design →Make →Deliver → Use →Maintain



Blade (Airfoil)

Brief overview on a core engineering practice at GE:
Design of Blades in Turbomachinery

Objectives:

1. Competitive performance of product (efficiency, power, …)

2. Reliability of product (durability, safety, robust operation)

3. Cost to design product (engineering, testing, certification)

4. Cost to make product (materials, manufacture, assembly)

5. Operational cost of product (including maintenance & repair)



Blade (Airfoil)

Brief overview on a core engineering practice at GE:
Design of Blades in Turbomachinery

Objectives:

1. Performance

2. Reliability 

3. Design Cost

4. Manufacturing Cost 

5. Operating/Service Cost

Ideally:

Drives Sales (Value for $)

Certification on 1st Test

No rework, built to spec+

No waste, rework, inventory

Value for $ for customer + GE
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Turbine Airfoil Design (circa 1980)

Blade (Airfoil)
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More Recent Manufacturing Process:
Still lots of focus on parts.

Engine designed 

DIGITALLY, but …

Data broken into 

PIECES, and …

Then put back together in Supply 

Chain MANUALLY
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And for part design: 
discipline-by-discipline analyses

23

Internal + external design

Internal flow model

Stress

Fluid flow & acoustics

Metal 

Temperature

Each technical stakeholder goes through:

CAD 
Model

Aerodynamics

Mechanical
Heat 

Transfer
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Manufacturing

(Supply Chain)

Iterative Design Cycle

24

Design hand-offs across disciplines of expertise

“Final Design” handoff to Manufacturing

Each technical stakeholder goes through:
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Example of Iterative Design Cycle:
Each engineering domain expert designs to requirements for their discipline.

25

Manufacturing

(Supply Chain)

Ideally: Flow of progress always moves forward (no “rework”)
• Fully Integrated data representation

• Common tools for all levels of detail (trade off precision and speed without impacting accuracy)

• Design flaws (such as contradictions across stakeholder disciplines) minimally reverse progress
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Example of Iterative Design Cycle:
Re-design (re-work) upon discovering the current design does not meet a key requirement.

26

Manufacturing

(Supply Chain)

Ideally: Flow of progress always moves forward (no “rework”)
• Fully Integrated data representation

• Common tools for all levels of detail (trade off precision and speed without impacting accuracy)

• Design flaws (such as contradictions across stakeholder disciplines) minimally reverse progress

Re-Iteration
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Iterative Design-to-Manufacturing Cycle
Parts not feasibly/reliably/cost-effectively manufactured may also kick back to re-work.

27

Manufacturing

(Supply Chain)

Re-Iteration

Each technical stakeholder goes through:
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Digital Thread & “The Shadow of Design”
“it is now widely accepted that 
over 70% of the final product costs are 
determined during design”

Product Design for Manufacture and Assembly, Third Edition
By G. Boothroyd, P. Dewhurst, V. A. Knight

Drive Variable Cost Productivity (VCP)
by

pushing cost visibility into Design
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GE Impact leveraging Leadership Computing
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High-end modeling - Moment of truth

Will we see
something different?

Will it be
useful?

Compare:

Best Internal

Modeling

Capability

30

GE Aviation LEAP
Unsteady CFD: Strut wake effects

GE Tacoma RANS solver
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• Unobservable physically

• Relevant to engineering design

• 2012 IDC award:

Never before seen

Prior State of 

the Art:
Steady Analysis

(GE Internal HPC)

Preliminary Result
Unsteady Analysis

(with Uniform Inlet)

Final Result
Unsteady Analysis

(with wake from strut)

On ORNL Jaguar Cray XT5 (2010)

© 2018 General Electric Company - All rights reserved
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• Heat

• Acoustics

• Fuel Burn

• Emissions

Old Design “Straight Airfoil” New Design Using “Bowed Airfoil”

Separated flow - poor air flow control

and loss of efficiency

Attached flow - good air flow control

and high efficiency Material Design

Design Optimization

Software: Simulation and Modeling

Dynamic Flows

• Metal alloy wear and tear

• “Crash tests” (bird strike)

Mechanical Properties

32
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Computational
Methods Maturity
a.k.a. Virtual / Digital / Computational / Numerical Modeling

Criticality of Computational Modeling
➢ All problem-solving employs models

(even if merely mental models of the person solving).
➢ Some problems necessarily must be modeled 

computationally due to factors such as 
physical test expense/difficulty/safety, turnaround time, 
legality/ethics, and/or measurement limitations.

Critique of Modeling
➢ Garbage-in = Garbage-out
➢ To advise and inform decision-making, 

models must be trusted and understood by both 
the people composing the models 
as well as those interpreting the models.

Crucial to Computational Modeling
➢ Computationally Literate Workforce & Leadership
➢ Hardware & Software Infrastructure & Ecosystem
➢ Facilities, Processes and Culture for Verification & Validation

Digital Opportunities vs. LEAN’s “Deadly Sins”
➢ Reusable Virtualized Assets vs. Inventory/WIP and Overproduction
➢ Automation & Visibility to increase Productivity and reduce Waste / Defects / Rework 
➢ Digital Thread Workflow vs. Motion/Waiting dependencies/hand-offs and Underused Talent

Computational Modeling Goals
1. Assert a Region of Competence for a model

where its use is numerically stable (ROBUSTNESS)
with minimal simplifying constraints (REALISM) and
quantifiably bounds uncertainties (CONFIDENCE)
of results with validated predictive ACCURACY.

2. Implement the model with an Architecture that
performs capably on HPC hardware (SCALABILITY)
and is interoperable and extensible (FLEXIBILITY).

3. Design model use and software management
to promote efficient workflows (PRODUCTIVITY),
reduce waste and improve quality (MATURITY).
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Realism Completeness of …

… Model’s
Region of 

Competence

Accuracy Validity within…

Confidence Error bounding within…

Robustness Stability & Assertability of…

Productivity Cognitive 
Augmentation

& Waste Reduction

Maturity & Architecture Quality

Scalability Capable & High Performance

Architecture
Flexibility

Modular, Extensible, 
Interoperable

Co-Design Web: Goals

Realism

Accuracy

Confidence

Robustness

Productivity

Maturity

Scalability

Flexibility

Model Competence

A
rc

h
it

ec
tu

re

Cognitive Augmentation
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Co-Design Web: Measurement
Realism

AccuracyFlexibility

Scalability

Maturity

Productivity

Robustness

Confidence

Sim
p

lified

Constrained

Ted
io

u
s

Uninformed0
1

2
3

4
5

0 = Undesirable (Absent)
1 = Minimally present
2 = Documented / Basic
3 = Managed & Consistent / Addressed
4 = Systemic & Repeatable / Advanced
5 = Best in Class / State of the Art

Realism

Accuracy

Confidence

Maturity

Productivity

Compatibility

Scalability

Robustness

Bad

Good
0

1
2

3
4

5

1
2

3

4

5
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Challenges
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Challenge: Legacy
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Legacy: Strength becomes Limitation

✓ Experience

✓ Confidence

✓ Regulatory acceptance

❖ Sunk investments deter re-investment

➢ Obsolete functionality / infrastructure

➢ Cost/complexity for backward compatibility

➢ Hinders innovation / adoption of novel practices
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SOS23, March 2019 39

Data Lake
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Data Lake Storage & Services Infrastructure

October 22, 

2020

40

Data Lake

DIGITAL THREAD CENTRALIZATION/FEDERATION OF LEGACY DATA / SOFTWARE

CRM data

ERP data

PLM data

MES data

Simulation data

Test data

MRO data…

…

…

…

…

… + ML data               …

…

…
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Data Lake Storage & Services Infrastructure

October 22, 

2020

41

Data Lake

DIGITAL THREAD SOURCES FROM LEGACY WORKFLOWS / PROCESSES

Silo’d tasks

Manual hand-offs

Rework loops

CRM data

ERP data

PLM data

MES data

Simulation data

Test data

MRO data…

…

…

…

…

… + ML data               …

…

…
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Data Lake Storage & Services Infrastructure

October 22, 

2020

42

Data Lake

INDEXING, SEARCH, REPORTING, PROTECTION & COMPLIANCE

Silo’d tasks

Manual hand-offs

Rework loops

CRM data

ERP data

PLM data

MES data

Simulation data

Test data

MRO data…

…

…

…

…

… + ML data               …

…

…
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CHALLENGE: VICIOUS CYCLE OF DATA DEGRADATION

Found
Data

Irrelevant, 
Untrusted & 

Tedious to Fix

Independently 
Recreate

(Under Own Control)

(Poorly)

Document & 
Submit

Redundancy, 
Inconsistency 

& 
Obsolescence

43
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Data Swamp
Challenge
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DECISIONS AS “PRIMARY INDEX” TO UNDERLYING DATA/ANALYSES

Opportunity: Decision Provenance – akin to “Design Rationale” concept

Who Proposed, Reviewed, Approved, Tested?

What Alternatives were considered?

Known Unknowns (environmental, economic, …)

Why Assumptions (limitations, dependencies, technology, …)

Evaluation Criteria & relative weights

(and then link to underlying references):

How Data analyses supporting the decision

Modeling methods applied (+ intellectual debt)

Physical process for measurement (Gage R&R, …)

Future footnotes: exemplar practices / learnings
and opportunities to improve (given more time/budget/capability)

At time of DECISION,
explicitly capture into knowledge steward: 
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Challenge: Machine Learning Reference Data

October 22, 

2020

46

Complexity of Response Hyper-surfaces

• Non-Ergodic (e.g., nucleation)

• Eigenfrequency (e.g., resonance)

• Discontinuity (e.g., phase transition)

• Stochasticity (e.g., turbulence)

Sparsity vs. Characterization Complexity

• Time/cost to generate synthetic data

• Time/cost to generate experimental data

• Consistency/Cost of data fusion between 

experimental + synthetic sources

• Dimensionality selection & hidden variables

• Access (proprietary and/or classification)

• Cost to validate synthetic data

• Cost to validate labeling of data

SUFFICIENCY FOR TRAINING
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Suggested candidate metrics as captured in Industry/Manufacturing chapter of CSESSP Report (October, 2015)

NITRD Computational Science and Engineering Software Sustainability and Productivity Challenges Workshop

National Science Foundation, Networking & Information Technology Research & Development, Dept. of Defense, Dept. of Energy

Challenge: Metrics and Incentives (financial recognition) / GAAP

47

https://www.nitrd.gov/pubs/CSESSPWorkshopReport.pdf

https://www.nitrd.gov/pubs/CSESSPWorkshopReport.pdf
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Challenge: Incentives (cross-silo recognition / “True Digital Thread”)

48

Even if metric is accepted – who gets the credit?

Organizational & Cultural Challenges

Cost

Here Payoff

Here
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Knowledge Challenge: Intellectual Debt

49

BEYOND EXPLAINABILITY: UNDERSTANDING
https://blog.usejournal.com/from-technical-debt-to-intellectual-debt-in-ai-e05ac56a502c

Intellectual Debt: With Great Power Comes Great Ignorance
Jonathan Zittrain, Jul 24

This kind of discovery — answers first, explanations later — I call “intellectual debt.”

We gain insight into what works without knowing why it works. We can put that insight to use immediately, and then tell 

ourselves we’ll figure out the details later [debt to be paid in the future].

We are borrowing as a society, rather than individually; artificial intelligence and specifically, machine learning are [being 

applied] to a seemingly unlimited number of new areas of inquiry.  The distinct promise of machine learning lies in 

suggesting answers to fuzzy, open-ended questions by identifying patterns and making predictions.

1. When we don’t know how something works, it becomes hard to predict how well it will adjust to 

unusual situations.

2. Machine learning models are becoming pervasive, compounding black box opacity:
a. oracular answers to single problems can generate consistently helpful results, but

b. as AI systems gather and ingest data, they produce data of their own, then consumed by still other AI systems.

3. We need to know our exposure: we should invest in a collective intellectual debt balance sheet. 

We must keep track of just where we’ve plugged in the answers

4. Traditional debt shifts control: from borrower to lender, and from future to past, as later decisions are 

constrained by earlier bargains. Answers without theory — intellectual debt — also will shift control in 

subtle ways. […] A world of knowledge without understanding becomes, to those of us living in it, a 

world without discernible cause and effect, and thus a world where we might become dependent on 

our own digital concierges to tell us what to do and when. 

5. Without the theory, we lose the autonomy that comes from knowing what we don’t know.

https://blog.usejournal.com/from-technical-debt-to-intellectual-debt-in-ai-e05ac56a502c
https://blog.usejournal.com/@zittrain?source=post_page---------------------------
https://blog.usejournal.com/from-technical-debt-to-intellectual-debt-in-ai-e05ac56a502c?source=post_page---------------------------
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ML/AI methods do not solve all problems: 
some are simply too complex for machines
• detection of zero-day computer viruses 
• resilient codes to arbitrary hardware failures
• Inference of chaotic dynamics of TCP flows

Not ML Solvable: 
Classes of problems with properties at limits:
• Computability limit (undecidability)

Church's proof that Hilbert's Entscheidungsproblem is unsolvable, and
Turing's theorem that there is no algorithm to solve the halting problem.

• Expressability limit (cannot state into formalism)
Tarski's undefinability theorem on the formal undefinability of truth

• Provability limit (Gödel’s incompleteness theorems)

• Learnability limit (can only resolve problem by choosing an axiomatic universe within which it is applicable
therefore solution is not applicable to data outside that universe – i.e. sampling from separate infinities)
(Vapnik <learnability> / Valiant <learnability-paper / PPT> / Devroye <A Probabilistic Theory of Pattern Recognition> - esp. slow rates of convergence – chapter 7)
E.g., unbounded deviation from Bayes’, infinite Vapnik-Chervonenkis dimension, …

(See also: Five Machine Learning Paradoxes that will Change the Way You Think About Data )

Apply Characterization: Analytical and mathematical characterizations of limits and their interpretation within application/domain context

Challenge: Foundational Limits of AI/ML
Credit: Nagi Rao
raons@ornl.gov

(computer sciences)

(domain sciences)

Science of AI/ML for Science

ML for 
Science

Physical-Abstract Hybrid Laws 

lead to sharpened AI/ML: 

• Physical, abstract, hybrid laws
• physical systems

• cyber infrastructures

• cyber-physical systems

• Customized AI/ML solutions may exploit
• structure

• relationships, correlations

• constraints

AI/ML Solutions exploit underlying sciences
• ensure solvability: computable, learnable, expressible, provable
• sharpen AI/ML solutions: structure and constraints from laws

Opportunity: [Science of {AI/ML] for Science}

The reasoning is as follows: consider AI/ML 
method that attempts to discover laws 
(truths) from data as being attempted in 
several science areas. An explanation of 
truth is proof. But Gödel's theorem (a 
version) shows that we cannot mechanically 
provide proofs for all truths – so some truths 
will remain undiscovered by ML/AI method.

The implications could be quite deep: one 
can write ML codes that to try to solve this 
problem but its output would be either 
incomplete or unsound or both – if applied 
without care, this ML solution could 
potentially output “pseudo untrue” laws.

https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Alan_Turing
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Tarski%27s_undefinability_theorem
https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems
https://users.soe.ucsc.edu/~manfred/pubs/C5.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf
https://www.cs.cmu.edu/~clegoues/docs/slides/learnable.pdf
http://www.szit.bme.hu/~gyorfi/pbook.pdf
A.	Five Machine Learning Paradoxes that will Change the Way You Think About Data
mailto:raons@ornl.gov
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Summary
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Criticality of Computational Methods, Model Maturity, Co-Design, Public-Private Engagement

Exascale Computing Project
Industry Council Chair

GE Research CIO Dave Kepczynski

GE engagement with Government Leadership Computing

© 2019, General Electric Company. All Rights Reserved.
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Challenges

Legacy

Metrics & Incentives

Data Swamp




