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Contributions 2018-2020

Systems

ServicesModels
Knowledge

Measure & Predict Intervene & Alter
• Privacy [Ubicomp 20-1]

• Locations [Ubicomp 19-1] [MobiCom 19-2]

• Energy [Ubicomp 20-4] [MobiCom 19-1]

• Behavior [Ubicomp 20-2] 

• Routes [Ubicomp 20-3] 

• Volume [WWW 20]

• Time [Ubicomp 19-2] 

• Speed [SenSys 18] 

• Distance [Ubicomp 18-2]

• Food Delivery [NSDI 21, MobiCom20] 

• Charging [RTSS 18]

• Ridesharing[Ubicomp 18-4]

• Rebalancing [Ubicomp 18-3]

• Dispatching [WWW 19]

• Navigation [ICCPS 18] 

• Planning [ICDCS 19]

• Transferring [Smartcomp 18]

• Parking [Ubicomp 18]



Advancing State-of-the-Arts

Domain

Temporal

5 Year Evolving [MobiCom 19-1]

Cross-Domain 
[MobiCom 14] [SigSpatial 15] [SenSys 18]

Transport.                    Telecom.Provinces [MobiCom 19-2]

2014 Electric 

Vehicle Density

(600 E Taxis)

2019 Electric 

Vehicle Density

(18,000 E Taxis)

Nations [SigSpatial 16]



VeMo

Enabling Transparent Vehicular Mobility Modeling 

at an Individual Level with Full Penetration

Yu Yang, X. Xie, Z. Fang, F. Zhang, Desheng Zhang



Background: Vehicle Localization  

http://abcnews.go.com/US/time-americans-waste-

traffic/story?id=33313765
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https://www.fhwa.dot.gov/policyinformation/statistics/

What if we know 

All Vehicles’ Locations in Real Time?

Location-based Services Anomaly Detections Sensing for Autonomous Driving



Goal: Real-time Locations for all Vehicles 

Truck #16

09:20:00

Truck #16

09:21:00

Truck #16

09:22:00

Truck #16

09:23:00

Truck #16

09:24:00

Truck #16

09:25:00

Truck #16

09:26:00

Truck #16

09:27:00

Inferring Vehicle Locations 

• Real-time (<10s)

• High-Accuracy (<100m)

• All Vehicles (without GPS)
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State of the Arts

Smartphone (e.g. 

Google Map)

Mobile Sensing Stationary Sensing

Aggregate
R.Balan[MobiSys’11]

J.Aslam[SenSys’12]

D.Zhang[MobiCom’14]

S.Zhang[ICCV’17]

Z.Qin[SenSys’18]

Y.Yang[UbiComp’18]

Individual A.Thiagarajan[SenSys’09]

D.Zhang[SenSys’13]

X.Gao[UbiComp’14]

Approach

Traffic Cameras Loop Sensors

Partial 

Penetration

Full 

Penetration

A.T. [NSDI’11]

Z.Yang [MobiSys’16] ?
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Opportunities of ETC-based Sensing

• Ubiquitous

• 45% Countries

• Low Cost

• No additional infrastructure

• Low Privacy Risk 

• No GPS and No Camera

• Full Penetration

• All Vehicles

http://www.nationmaster.com/country-info/stats/Transport/Road/Expressway-length

Guangdong Province ETC

• Area: 170K km2  ~ 7.5✕ New Jersey

• Population: 80 million~ 9✕ New Jersey

• Expressway: 8000 km ~ 17✕ New Jersey



10AM
5PM

Trip Length Distribution in terms of Distance and Duration

50% of Trips 

Shorter than 

20km

50% of Trips 

Shorter than 

18 mins

Opportunities of ETC-based Sensing



Elements

Destination

Route

Speed

Uncertainty

> 4 / each origin (Entropy=2.3)

> 3 / each origin & destination

Standard Deviation: 35 km/h

Truck #16

09:20:00

Challenges of ETC-based Sensing
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Data Feature
Machine 

Learning1
Application+

Destination 

Predictor

Route 

Predictor

Speed 

Predictor

Individual

Feature

Crowd

Feature

Context

Feature

Predicted 

Destination

Predicted  

Route
Inferring 

Speed

Inferred Real-Time Locations

Map

ETC Billing Data

Context

Vehicle ID, 

Origin Station & Time, 

Destination Station & Time

(No GPS Traces)

System Overview

[1] Lakshminarayanan, Balaji, et al. "Mondrian forests: Efficient online random forests." NIPS. 2014.
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Feature
Training

Label
+ +

Individual

Feature

Crowd

Feature

Context

Feature

Data
Machine 

Learning1

Vehicle ID, 

Origin Station & Time, 

Destination Station & Time

(No GPS Traces)

[1] Lakshminarayanan, Balaji, et al. "Mondrian forests: Efficient online random forests." NIPS. 2014.

Destination 

Predictor

Route 

Predictor

Speed 

Predictor

?

Application

Predicted 
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Predicted  

Route
Inferring 

Speed

Inferred Real-Time Locations

Map

ETC Billing Data

Context

System Overview
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Destination

9AM
Origin 

8AM

Travel duration

1 Hour

Route 1

Route 2

Joint Optimization with 

Expectation Maximization & Block Coordinate Descent

𝑹𝒐𝒖𝒕𝒆 𝑺𝒑𝒆𝒆𝒅𝑻𝒓𝒂𝒗𝒆𝒍 𝑫𝒖𝒓𝒂𝒕𝒊𝒐𝒏𝒍𝒐𝒈𝑷 , )𝒎𝒂𝒙 ෍

𝑬𝑻𝑪 𝑹𝒆𝒄𝒐𝒓𝒅𝒔

An ETC Record

Historical Route and Speed Learning without GPS
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Evaluation: Methodology

18 / 31

Types: Commercial Personal

Time: January 2016

#Vehicles: 14,000 100,000

#Records: 410 million 430 million

Record Format

ID, Time, GPS 

location, Speed.

Uploaded every

10-15 seconds

Guangdong Province, China

Training

ETC

Test

Ground Truth Given By

Vehicle OBD Devices

Predicted 

locations

Actual

locations

?

Models



[ VeMo | Correctly Predicted Route ]

VeMo

● Our work (79 Toll Stations in A City)
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[1] Arvind Thiagarajan, et al. Accurate, low-energy trajectory 

mapping for mobile devices. NSDI. 2011 

[2] Xiaoyang Xie, et al. coSense: Collaborative Urban-Scale 

Vehicle Sensing based on Heterogeneous Fleets, UbiComp 2019

Surveillance Camera Network (STrack)

● Cameras in 500 Road Segments

Cellular Network (CTrack) [1][2]

● 3000 Cell Towers in A City
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Evaluation Results
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● Predictability 
○ Destinations, Routes, and Speeds given Contexts (85%, 80%)

○ Two Sets of Unknown Parameters: Route and Speed

● Limitations
○ One ETC System

○ One Evaluation Site

● Why ETC only?
○ Lower Bound

○ Better if combined with GPS

● Privacy
○ ETC Data for Billing

○ No GPS, No Camera

Lessons Learned

Destination

9AM

Origin

8AM

Question:

Is it possible to sense Individual Vehicles 

with Full Penetration in Real Time without GPS?

Case Study: 

Electric Toll Collection Network 

as a Stationary Sensing System

Generalization?



Generalization: From ETC to Urban Infrastructure 

Utilizing Interactions between Urban Infrastructure and 

Residents to infer their Real-Time Locations? 

Opportunities

• Low Cost

• Transparent

• High Penetration 

Challenges

• Uncertainty

• Implicit

• Biased 

Examples

• Cellular Network

• Payment Network

• Social Network

• Vehicular Network

• ……  

Unifying by Fundamental Properties governing Mobility Sensing 

Spatial Granularity & Temporal Continuity 



Payment Network

(10,082 Stations)

Cellular Network

(3,595 Towers)
Toll Collection System

(1,470 Stations (79 in Shenzhen))

Social Networks
(480,555 Point of Interests) 

Generalization: From ETC to Urban Infrastructures for Mobility Sensing 



Generalization: From ETC to Urban Infrastructures for Mobility Sensing 
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Measure & Predict Intervene & Alter
• Privacy [Ubicomp 20-1]

• Locations [Ubicomp 19-1] [MobiCom 19-2]

• Energy [Ubicomp 20-4] [MobiCom 19-1]

• Behavior [Ubicomp 20-2] 

• Routes [Ubicomp 20-3] 

• Volume [WWW 20]

• Time [Ubicomp 19-2] 

• Speed [SenSys 18] 

• Distance [Ubicomp 18-2]

• Delivery [MobiCom 20] 

• Charging [RTSS 18]

• Ridesharing[Ubicomp 18-4]

• Rebalancing [Ubicomp 18-3]

• Dispatching [WWW 19]

• Navigation [ICCPS 18] 

• Planning [ICDCS 19]

• Transferring [Smartcomp 18]

• Parking [Ubicomp 18]

Future Urban CPS

Sensing for Future Urban Mobility 

• Shared 

• Electric

• Autonomous



Sharing: Resource Management  (Sharing Economy) 

Scales

Locations

Regional

Urban

National

Mobility Modality

49%

41%

19%

24% 37% 31% 

41% 

43% 

19% 

21% 37% 

31% 

Vehicle #PopulationTerrain

[UbiComp 2018] 

[IPSN 2015]

[SenSys 2013]



Electric: Mobility and Charging Pattern Evolving of Electric Vehicles

Shenzhen Electric Vehicle Networks: 22K EVs as of 2020

Charging Station Evolving

[MobiCom 2019] 

[ RTSS 2018]

Potential Research Questions

• Quantify Benefits of Electric Vehicles

• Charging Recommendation/Scheduling 

• Charging Station Deployment 

• Plug-in vs. Swapping vs. Wireless

• Co-Charging with Private Electric Vehicles



NSF PAWR: COSMOS: Cloud-Enhanced Open Software-Defined 

Mobile-Wireless Testbed （Rutgers Winlab & Columbia & NYU）

Edge Computing

• Latency: Highly Responsive Services

• Bandwidth: Edge Analytics

• Privacy: Local Data Processing

Autonomous: Interaction between Vehicles and Edge Devices  



Takeaway Message 

Systems

ServicesModels
Knowledge

(i) Overview: Mobile CPS, Cross-Domain, Spatial, Temporal 

(ii) Question: Sense Vehicles with Full Penetration without GPS?

(iii) Case Study: ETC as a Sensing System

(iv) Generalization: Temporal Continuity & Spatial Granularity 

(v) Future Mobility: Shared, Electric, Autonomous

Utilizing Implicit data from Engineered Systems to 

Explicitly quantify Natural Phenomena to Improve these 

Systems, i.e., a Closed Scientific Loop  

from Practice, to Theory, back to Practice
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