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Contributions 2018-2020
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Measure & Predict Intervene & Alter
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Advancing State-of-the-Arts
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Mobile Computing and Networking

VeMo
Enabling Transparent \ehicular Mobility Modeling
at an Individual Level with Full Penetration

Yu Yang, X. Xie, Z. Fang, F. Zhang, Desheng Zhang




Background: \Vehicle Localization

What 1f we know

All Vehicles’ Locations in Real Time?
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Location-based Services Anomaly Detections  Sensing for Autonomous Driving
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Inferring Vehicle Locations

* Real-time (<10s)

« High-Accuracy (<100m)

 All Vehicles ( )
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State of the Arts

Mobile Sensing Stationary Sensing
Approach
0 7
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%; ‘
Yo Smartphone (e.g. Traffic Cameras Loop Sensors
Google Map)
Aggregate R.Balan[MobiSys’11] S.Zhang[ICCV’17]
3 J.Aslam[SenSys’12] Z.Qin[SenSys’18]
‘A—’I; D.Zhang[MobiCom’14] Y.Yang[UbiComp’18]
o Partial Full
Individual | A ThiagarajanSensys 09] Penetration Penetration
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Opportunities of ETC-based Sensing

« Ubiquitous
« 45% Countries
 Low Cost
« No additional infrastructure
* Low Privacy Risk
 No GPS and No Camera
* Full Penetration
« All Vehicles

Guangzhou-Foshan
Road Network

Field Value

Entering/Exit Toll Station Humen Station

Entering/Exit Time 2016-07-01 13:00:01
vemicle Id DTsIDIey Guangdong Province ETC
enicle 1ype ar/pbus/ 1ruc o . 2
Axis Count X Area: 170K km? ~ 7.5X New Jersey

Weight 1500kg » Population: 80 million~ 9X New Jersey
* Expressway: 8000 km ~ 17X New Jersey

Number of Daily Transactions: 4 millions
Number of Daily Vehicles: 2 millions

http://www.nationmaster.com/country-info/stats/Transport/Road/Expressway-length



Opportunities of ETC-based Sensing
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Trip Length Distribution in terms of Distance and Duration



Truck #16 x X
09:20:00
T X

Elements Uncertainty

Destination |> 4 / each origin (Entropy=2.3)

Route > 3/ each origin & destination

Speed Standard Deviation: 35 km/h

14 / 31



System Overview

Machine

Data == Feature + ., == Application
Learning
‘ Individual Destination Predicted
04 Feature Predictor Dﬁstina;iond- o
Ma Context redicte :
g Crowd Route oo Route ISnfer(;lng
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[1] Lakshminarayanan, Balaji, et al. "Mondrian forests: Efficient online random forests." NIPS. 2014.



System Overview

Machine T gl
= + )
Data Feature Learningt Lab,b}pgpllcatlon

‘ Individual Destination Predicted
YY) Feature Predictor Dﬁstina:::)iond_ 9
Ma Context G redicte ;
¥ Crowd Route Oo Route Inferring
Feature Predictor Ooo J Speed
—— ' 00 00 B
—— Context Speed
ETC Billing Data_ _Fe_ature GG A | nferred Real-Time Locations
 Vehicle ID, S

?

Orlgln Station & Time,
| Destination Station & Time.
! (No GPS Traces)

[1] Lakshminarayanan, Balaji, et al. "Mondrian forests: Efficient online random forests." NIPS. 2014.



Historical Route and Speed Learning without GPS

Travel duration Destination

1 Hour 9AM

An ETC Record

max Z logP( Travel Duration | Route , Speed )
ETC Records

Joint Optimization with
Expectation Maximization & Block Coordinate Descent



Evaluation: Methodql_ogy;"‘““
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\Vehicle OBD Devices

Types:

: 2
Commercial Personal

Time:

January 2016

#Vehicles:
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#Records:
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Iff,\Time, GPS
location, Speed.
Uploaded every

10-15 seconds




Evaluation Results
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100 Cellular Network (CTrack) [1][2] (77%)

- o 3000 Cell Towers in A City

S 80 -
< W VeMo (71%)
§ 60 \ o Our work (79 Toll Stations in A City) S

| -

40 i

§ Surveillance Camera Network (STrack) (64%)
< ]

e Cameras in 500 Road Segments

% 4 8§ 12 16 20 24
Time (Hour)

.....

[1] Arvind Thiagarajan, et al. Accurate, low-energy trajectory
mapping for mobile devices. NSDI. 2011

[2] Xiaoyang Xie, et al. coSense: Collaborative Urban-Scale
Vehicle Sensing based on Heterogeneous Fleets, UbiComp 2019



Evaluation Results

Intermediate
Result
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|_essons Learned

Question:
IS It possible to sense Individual Vehicles
with Full Penetration in Real Time without GPS?

Case Study:
Electric Toll Collection Network
as a Stationary Sensing System

Generalization?




Generalization: From ETC to Urban Infrastructure

Utilizing Interactions between Urban Infrastructure and
Residents to infer their Real-Time Locations?

Opportunities Challenges Examples
* Low Cost » Uncertainty * Cellular Network
o Transparent » Implicit . Payment Network
 High Penetration * Biased ’ Soqal Network
* Vehicular Network

Unifying by Fundamental Properties governing Mobility Sensing

Spatial Granularity & Temporal Continuity



Generalization: From ETC to Urban Infrastructures for Mobility Sensing

Cellular Network

Toll Collection System
(3,595 Towers)

(1,470 Stations (79 in Shenzhen))

Payment Network

| Social Networks
(10,082 Stations) (480,555 Point of Interests)



Generalization: From ETC to Urban Infrastructures for Mobility Sensing

4k

Coarse-grained
Mobility Sensing

2k

140

60

Fine-grained i
Mobility Sensing

Electric
Vehicle

Temporal Continuity (Second)

Spatial Granularity (km?)



Future Urban CPS
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Sensing for Future Urban Mobility
* Shared

e Locati

e Electric

e Autonomous




Sharing: Resource Management (Sharing Economy)
cale | Mobility Modality

[UbiComp 2018]
[IPSN 2015]
[SenSys 2013]

e A L S T S
San Francisco e§1 hen Shanghai

Terrain Population  Vehicle #



Electric: Mobility and Charging Pattern Evolving of Electric \ehicles

Charging Station Evolving
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Potential Research Questions
 Quantify Benefits of Electric Vehicles

Year 2013

Year | Number
2013 31
2014 33
2015 36
2016 56 |
97
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 Charging Recommendation/Scheduling

 Charging Station Deployment

* Plug-in vs. Swapping vs. Wireless
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Autonomous: Interaction between \ehicles and Edge Devices
s,
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Large node: rooftop deployments \ - }
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cloud — L ,‘ 2= H _
Medium node: street-level devices - e SONE l ‘ : ) {
B ual use with wireless/wired B I \ . ‘ ! FERWN
backhaul ‘ L i1 o L

Small node: custom vehicular and/or
A cOTs portable devices
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Edge Computing

7|+ Latency: Highly Responsive Services
/|+  Bandwidth: Edge Analytics

I Privacy: Local Data Processing

NSF PAWR: COSMOS: Cloud-Enhanced Open Software-Defined
Mobile-Wireless Testbed (Rutgers Winlab & Columbia & NYU)



Takeaway Message

Knowledge
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Utilizing Implicit data from Engineered Systems to
Explicitly quantify Natural Phenomena to Improve these

Systems, 1.€., a Closed Scientific Loop

from Practice, to Theory, back to Practice

Systems
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Data and More Work

Th an kS https://www.cs.rutgers.edu/~dz220/ & L" g

RUTGERS d.z@rutgers.edu



