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The Future of Health
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Mobile Health & Sensor Technology

Wearable Health Devices — Vital Sign Monitoring, Systems, and Technologies

Eye
Glucose-sensing lens
Digital fundoscope

Smartphone visual-acuity tracking

Automated refractive error

Noninvasive intraocular pressure

Ear
Smart hearing aids
Digital otoscope

Lung

Home spirometry

Pulse oximetry

Inhaler use

Breath-based diagnostics
Breathing sounds
Environmental exposure

Blood

Continuous glucose
Transdermal Hb

Pathogens (genomics-based)
PoC blood tests

Skin

Temperature

Gross lesions

Pressure sensor (wound care)
Sweat chemistry

Cutaneous blood flow

Other sensors and monitors
Pill-box and -bottle

Posture

Body position

Activity

Sleep

Bladder and urine

Comprehensive urinalysis
STDs (genomic detection)
Diaper-based sensors

Brain and emotion

Wireless mobile EEG

Seizure

Autonomic nervous activity
Head-impact sensor

Intracranial pressure (noninvasive)
Stress recognition (voice, respiration)

LEET ELT AEHTIETS

Continuous BP tracking
Handheld ECG

Heart rhythm

Cardiac output

Stroke volume

Thoracic impedance (fluid)

Gastrointestinal
Endoscopic imaging
Esophageal pH
Medication compliance
Fecal blood or bilirubin
Gut electrical activity
Chewing

Watching over one's health

Pulse

BP

Temperature

Activity

Hydration

Sleep stages

Seizure

Respiration rate

0, saturation

Blood CO,

Blood glucose

ECG (single-lead)

Cardiac output

Stroke volume
Stress:

Heart-rate variability

Electrodermal activity

SMART CLOTHING

SMART GLASSES

SMART WATCHES

SPORTS/ACTIVITY TRACKERS

HEALTHCARE

Duarte Dias et al. Sensors (Basel). 2018 Aug; 18(8): 2414.
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Trend of global market value of wearable computing devices, in millions, between 2017

and 2019.



Digital Twins

DIGITAL TWINS IN CHRONIC DISEASE

9
@ HEALTHCARE

= Optimize health

® Predict and prevent adverse events
®= Planned interventions

* Extend quality of life

" Extendlife

ANEAR-REAL-TIME LINKAGE BE TWEEN PHYSICAL AND DIGITAL WORLDS

| DIGITAL THREAD

I Anatomy & Physiology [ Electronic Health Record

Use Conditions
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Curtesy of MARK PALMER, MD, PHD
Distinguished Scientist, Strategic Scientific Operations, Medtronic

DIGITAL TWIN

Machine Learning
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Statistical Analysis

Digital twins exist at the nexus of
physical engineering, data science,
and machine learning, and their
value translates directly to
measurable business outcomes.*

*The Digital Twin: Compressing time-to-value for digital industrial companies, GE



Salutogenesis

Behavioral Pharmacological
Intervention Intervention
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Semi-Healthy
State

Healthy State Unhealthy
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PREDICTIVE MODELING
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Biological Spatiotemporal Scales

Proteins —»  Cell structure and function —» Tissue structure Organ structure  — Clinical medicine
and function and function
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1065 : 2 Populations

Molecular events Diffusion Maotility Protein Human
(for example, Cell signalling turnover lifetime
ion-channel gating)

Hunter and Borg, Nature 2003




Why Model?

* Infrastructure for systematically
archiving and transferring
knowledge

— Prevent reinventing processes

year after year

* Only way to predict outcomes not
otherwise testable

« Drive scientific discovery
- emergent properties

« Extend insight and understanding
beyond the cognitive capabilities
of the human mind

NEW INSIGHTS
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_ NEW NEW TECHNOLOGIES
© Institute for DATA
Systems Biology
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Model-Driven Science
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Modeling & Simulation Uy  cuture/
—> Testable hypotheses ¥ ADAPTIVE

Predictions v

Design =8  Experiment =& Results = Reporting

Populate knowledge base
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Predictive Modeling

Matfrﬂtical @

Mechanistic < Systems
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Quantitative Measures

Systemic

Electrical

Expression .
Sequencing —

Fluorescence

Imaging

e
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Mechanistic

Models to
drive better
simulations

High Performance Computing — the Al wave
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Alber, M., Buganza Tepole, A., Cannon, W.R. et al. * Integrating machine learning and multiscale
modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral
sciences. npj Digit. Med. 2, 115 (2019). https://doi.org/10.1038/s41746-019-0193-y
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https://doi.org/10.1007/s11831-020-09405-5

e ) —_—

||\/|/_\|T

A VA A O




identifying
correlations

quantifying
uncertainty

d

creating
surrogate
models

Z
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7
managing
ill-posed
problems

preventing
overfitting

npj Digital Medicine (2019) 2:115
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exploring
massive design
spaces

identifying
system
dynamics

S MACHINE
LEARNING

constraining
design
spaces

exploiting
underlying
physics

analyzing

sensitivity

identifying
parameter
values

supple-
menting trai-
ning data

https://doi.org/10.1038/s41746-019-0193-y

constraining
parameter
spaces

predicting
system
dynamics

identifying \

relevant
features

identifying
causality

understanding
emergence of
function

bridging
the
scales

[ elucidating
mechanisms

" exploring

interaction
of features 4
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Just Published!
Erdemir, A., Mulugeta, L., Ku, J.P. et al. Credible practice of modeling et
FecentChanges || F . . . oM. . [
- and simulation in healthcare: ten rules from a multidisciplinary
. perspective. J Trans/ Med 18, 369 (2020).
https://doi.org/10.1186/s12967-020-02540-4

1. Ten Simple Rules of Credible Practice
1. Committee Perspective
2. Community Perspective

Contents

Ten Simple Rules of Credible Practice

One of the first tasks of the Commuttee was to 1dentify best practices to enhance credibility of modeling & simulation in healthcare.
This activity started as a Commuittes discussion, where CPMS Task Teams have been tasked with generating a list of ten key elements

or simple rules of credible practice (Commuttee Perspective). As the Commuttee discussions finalized. the group agreed on the
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ww Credible Practice of Modeling &
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About Downloads Doc

Ten Not So Simple Rules for
Model Credibility

Define context clearly tles | Text
Use appropriate data

Evaluate within context

List limitations explicitly .

Use version control

Document adequately
Disseminate broadly

Conduct independent reviews
Test competing implementations
Conform to standards

RecentChanges || FindPage || Helg
Info Attachment

Contents
1. Ten Simple Rules of Credi
1. Committee Perspectis
2. Community Perspecti
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Now
Applied to
COVID-19

10 Simple Rules with Conformance Rubric

Ten Simple Rules for
Model Credibility

Define context clearly

Use appropriate data

Evaluate within context

List limitations explicitly

Use version control

Document adequately

Disseminate broadly

Conduct independent reviews

Test competing implementations
. Conform to standards
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MULTISCALE MSM Task Forces
MODELING

Task Force on Methodologies
* Cell-to-Macroscale Working Group
» High Performance Computing Working

CONSORTIUM
IMAG

Group
* Multiscale Systems Biology Working Group
Task Force on Basic Science Applications * Theoretical and Computational Methods
= Biomechanics Working Group * Population Modeling Working Group

» Computational Neuroscience Working Group

» Integrated multiscale biomaterials experiment and
modeling group (IMuBEAM)

Task Force on Dissemination

= Committee on Credible Practice of Modeling
& Simulation in Healthcare Description

= Model and Data Sharing Working Group

=  Public Dissemination and Education

Task Force on Clinical Translation



http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Clinical_and_Translational_Issues_Working_Group
https://www.imagwiki.nibib.nih.gov/working-groups/multiscale-modeling-and-viral-pandemics
https://www.imagwiki.nibib.nih.gov/working-groups/msm-medical-devices
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Biomechanics_Working_Group
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Computational_Neuroscience_Working_Group
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Integrated_multiscale_biomaterials_experiment_and_modeling_group_(ImuBEAM)
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Committee_on_Credible_Practice_of_Modeling_&_Simulation_in_Healthcare_Description
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Model_and_Data_Sharing_Working_Group
https://www.imagwiki.nibib.nih.gov/working-groups/dissemination-public-dissemination-and-education-pde-working-group
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Cell-to-Macroscale_Working_Group
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=High_Performance_Computing_Working_Group
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Multiscale_Systems_Biology_Working_Group
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Theoretical_and_Computational_Methods
http://www.imagwiki.nibib.nih.gov/mediawiki/index.php?title=Population_Modeling_Working_Group

Greater than the sum of 1its parts
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Interagency Modeling and Analysis Group
(IMAG)

(Search: IMAG Wiki)
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Biological Spatiotemporal Scales

Proteins —»  Cell structure and funct o-n —» Tissue structure — Organ structure  —= Clinical medic e
and function
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genes proteins types systems

1065 : 2 Populations

Molecular events Diffusion Maotility Protein Human
(for example, Cell signalling turnover lifetime
ion-channel gating)

Hunter and Borg, Nature 2003
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: Understanding Back Pain

So if you
UNDERSTAND

what. an individual’s
drivers of
PAIN ARE,

prog

NIH - Helping to End Addiction Long-term

heal.nih.gov/news/stories/bacpac-low-back-pain

\/K U.S. Department of Health & Human Services National Institutes of Health

m) National Institutes of Health About Research Funding News& Events Resources Search
HEAL Initiative

Piecing Together the Puzzle of Chronic Low Back Pain

A computer model may be able to inspire new insights and treatments.

Home / News & Events / Research Spotlights / Piecing Together the Puzzle of Chronic Low Back Pain

The human back is a complex structure with bones,
nerves, tendons, discs, and more — all places where
something can go wrong and cause pain, which, for many
people, becomes a long-term or chronic problem. Life
stresses and other medical and mental health conditions
aggravate the problem.

With so many pieces, it's hard to get a holistic view of the
puzzle or pinpoint the cause of the pain.

“People tend to focus on one aspect or another,” said
Jeffrey Lotz#, Ph.D., a medical engineer who studies back

pain at the University of California, San Francisco. “Some
monnla thinle ite larmahs in tha mind: camms mannla Fhinlk Models, such as this plastic replica of the spine, are representations



https://youtu.be/lmhuuQtliBI

Lower Back Pain

Built on the Foundation of the Biopsychosocial Concept

Biophysical factors Comorbidities

Pain experience
« Nociceptive input*
« Central pain processing

v 1

Disability

Genetic factors Social factors

Psychological factors

Hartvigsen et al., 2018



BACPAC

Back Pain Consartium

Peripheral tissue stimulus
(mechanical +/- chemical

¢

(Nociception)

(Central pain processing)

4

(Pain experience)

@S
N\

Internal
Factors, e.g.
Inflammation,
comorbidities,

pain beliefs

Hunt, Mehling, O’Neill

Individual

External
Factors, e.g.
social context


https://youtu.be/lmhuuQtliBI

BACPAC Theoretical Model WG

Psychological Input

Genetics

Pain Processing

Personality Traits
Pessimism, neuroticism
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Affective State

Anxiety, Depression

Coping Styles

Active-approach

1 Emotion-oriented

|| Psychology

Resources

Self Regulation
Emotion Regulation
Self-Efficacy
Mindfulness

Supraspinal
Sensitization

Societal Input

Arousal; Appraisal
Emotional Response

Pain Experience

. Social Context .
= | SES, Perceived Support, Financial Strain |z
: Personal History .
- Substance Use, Sleep, Trauma .

Pain Avoidance

Physical
Activity

Exercise,
Occupation

Modulation

Central Pain Processing

Insula, ACC, PFC, NAc

Spasticity

== Adaptation |
Load [ .

Spinal
Sensitizatiop

snnnnnnngff S SR SSSSSS SIS SIIRER

Neuromotor
Control

H Kinematics m

Tissue
Tolerance

Nociception

Peripheral

Systemic Input

Autonomic &
HPA Axis Dysregulation

Inflammation

Damage

()
Qo
(18]
S
©
o
+

Sensitization

]

Tissue Stress

Biomechanical Input

Peripheral Stimulus
Disc, muscle, vertebra, facets

Familial Input

Demographics

Age/Sex/Race
BMI

Anatomy

Genetics
Tissue Structure/Composition

BACPAC

Back Pain Caonsoartium


https://youtu.be/lmhuuQtliBI

BACPAC Research Agenda — Goal 1
State-of-the-Art Model for Chronic Low Back Pain

 Develop a theoretical model for chronic low back pain

BACPAC Research Agenda — Goal 2
Identify factors that are predictive of treatment effectiveness

for well-defined patient subpopulations

» Develop Testable Hypotheses

BACPAC Research Agenda — Goal 3
Develop an algorithm for multi-modal interventions for individuals
with different phenotypes of chronic low back pain

 Design and conduct a large-scale adaptive cLBP trial that tests
multiple bundled or sequential interventions

NIH

HEAL June 2020

INITIATIVE



https://youtu.be/lmhuuQtliBI

! |
! |
: 6 surveys l
: Physical Measurements :
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Current Data Additional

Surveys
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RESEARCH PROGRAM

Future Robust Data
Ecosystem

Additional Measurements
and Specimens

Data Linkages

Additional Digital
Health Tech
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Bioassays from
stored samples

Notes, Labs,
Imaging...
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Unstructured EHR Data




SPARC

RECORD

Health

Inputs

e Stimulus design
* Frequency

* Amplitude
* Duration Outputs
* Duty Cycle

* Change in organ function (on- and off-

* Electrode design and placement

Animal model
Disease model/phenotype

Physiological recordings (for informing
closed-loop stimulation)

target effects)
Biomarkers

Change in electrode interface (e.g.
impedance)

Plasticity/adaptation



CFDE

* Making data from
Common Fund
programs FAIR

NoveL INsiGHTS
INnTo BiIrTH DEFECTS

e Kips FiRsT
e SPARC

* HuBMAP
e EXRNA )

New Druc TARGETS
For PebiaTRic CANCER

RESEARCH PORTAL

TREATMENTS

e Kips FIRsT

o (GTEX

e | INCS )

D COMMON
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TReEATMENT PLANNING FUND

e Kips FIRsT D

o GTExX ATA

* LINGS ECOSYSTEM

MoT( PAC

ENHANCING THE ABILITY TO
ASK SCIENTIFIC QUESTIONS
ACROSS DATA SETS

e IDG
¢ VIETABOLOMICS )

NIH LINCS

\ PROGRAM
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I Furuee
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I COORDINATING
CENTERS
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' IDG
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\ IN THE FUTURE




Experiment
types GTEx HMP/|HMP LINCS Metabolomics |SPARC 4D Nucleome [MoTrPAC

Genomics

Transcriptomics

Metabolomics

Proteomics

Imaging

In Vitro

In/ex vivo

Code

Whole genome/exome sequencing
Omni SNP Arrays

16S metagenomic sequence
Epigenomics
RNA/miRNA/mRNA-Seq

Array or L1000 platform based
Mass Spectrometry (GCMS, LCMS)
NMR

Lipidomics

Mass Spec based

Microarray based

Fluorescence based
Histology/Cytology

Radiology (MRI)

Binding Assays

Immuno Assays

Neural stimulation/neural activity recording
High resolution manometry

Analysis Workflow




Hardware Exists, Research Methodologies Lag

* Quantified self and health
monitoring technologies are
evolving rapidly; data is often
proprietary

* Challenges

* Methods for dealing with data size
and complexity

 Validation of models for application
in clinical research and trials

* Multidimensional interpretation of
data

* Ethics of use, provenance of data,
and regulatory strategies

Commercially Research
Available Grade Acoustic

Flexible

Activity Sl el Activity ,Ascé:isol;/se Sensors

Monitors Monitors



Biomedical and Behavioral Research Challenges

/o Heterogeneous data sources
¢ Unstructured data sources

¢ Lack of data on social determinants of
health

e Measurement issues (e.g.
incompleteness, inaccuracy, imprecision
in self-reported data)

e Privacy and security
¢ Cost
\- Limited adoption of common data models

-

eSemantic data integration (i.e. linking data
elements by their meaning)

e Large longitudinal cohorts

¢ Ontology integration

e Ontology appropriateness (e.g. ontologies
made for billing vs. for diagnostic purposes)
e Semantic interoperability- common language
e Automated study design

\

Data Sources

Study Designs

Prediction
Modeling

Translational
R

* Biases of all sorts (e.g. protopathic) \
¢ Confounding

¢ Causal inference vs. mechanistic

¢ Black-boxes vs. white-boxes (i.e.
interpretability vs. performance)

e Complexity-based model selection

¢ Benchmark development

¢ Pragmatic interoperability (reproducibility,
replicability, generalizability)- different labs
able to get the same result

J

~

eLimited individual empowerment

¢ Disconnect from relevant clinical research
¢ Personal health record/health avatar
(besides provider’s electronic records)

e Acceptance of artificial intelligence as
integral part of doctors’ tools

e Learning systems

e Ethical usage and dissemination of
modelling algorithms

¢ Redefining disease phenotype /

from Prosperi et al. BMIC Medical Informatics and Decision Making (2018)



HOW DO WE GET THERE?



The NIH Artificial Intellisencelnitiative through 2028

3> > >

— > To Propel Progress in Biomedical Research through NEXT-GENERATION Al




NIH Al Working Group Recommendations (12/13/2019 Acp report)

R2: criteria for ML-friendly datasets /—\

~—r Data R3: “datasheets” and "model cards”
R4: consent and data access standards

ollection

R1: flagship data generation efforts EHEI|}I"SI5
reuse

A follow-up from the July 2018 Al

Workshop, N J,,--"I https://videocast.nih.gov/watch=35426
https:/(datascience.nih.gov/communitv FEDPTEE""H- \,i___,f”EthiCS (start at 1 hour, 2 minutes)
/2018biomedAl attfact | accountable
train | informed
convene ' representative

R7: ML-focused trainees and fellows.
R8: convene cross-disciplinary collaborators R5: ethical principles for ML in biomedicine

Rb: curricula for ML-BioMed experts



https://videocast.nih.gov/watch=35426
https://datascience.nih.gov/community/2018biomedAI

Parallel Revolutions:
Fusing Biomedicine and Machine Learning (12/13/2019 aco report)

Data Generation

more data about the biology and health
of more individuals than ever before ML-BioMed

biomedical experiments®
that are designed for ML
ML that's designed for

Data Analysis biomedical experiments’

machine learning, other forms of

artificial intelligence, cloud computing
*Note: Biomedical experiments include
biological and behavioral studies




(1) Support flagship data generation efforts to propel progress by the

scientific community.

Support flagship efforts that generate large-scale Projects should:
experimental data, with billions of data points " address key biomedical challenges
designed to: using ML methods
_ C _ _ = advance ML methods for future use
i. be well-suited for ML analysis and inference in biomedicine
ii. address key biomedical challenges = produce transformative data sets,
iii. stimulate new approaches in machine learning designed with ML in mind

=  propel new ways to gather massive
data in biomedicine

= involve strong engagement from
leading ML researchers

And that implement processes designed to:
i. develop improved criteria and technical
mechanisms for data access
ii. strengthen ethical criteria for dataset use Project review should:

(consent, privacy, accountability, ...) " incorporate expertise in ML as well
as traditional biomedical domains

27




Overall Initiative Goals

+»» Establish a launchpad for widespread adoption of
Next-Generation Al

¢ Create next generation Al-driven scientific design
and assessment frameworks

**Enable transformative

data collection around

grand challenges in biomedical
research

+* Challenges that are currently
beyond our human intuition and
require next-generation Al
approaches to solve

+* All future challenges to use
adoptive framework



Artificial Intelligence — what’s next-gen?

*Self-driving cars

-Facial recognition tools to 1) Remove the black box - explainable Al 0 Al & ROBOTICS
predict depression and 2) Remove fragile Al —impenetrable security ey B

mental health 3) Remove bias — ethics in Al

«Detection of cancerous 4) Remove big data — learn from small data

pulmonary nodules on 5) Address physics of Al - infrastructure

chest X-rays

«Improved accuracy and
speed of interpretation of
pathology slides
-Classification of skin Narrow Al
cancer by image analysis
*Diagnose heart attack
from ECG data

*Finding diminutive
(<5dmm) polyps in a
colonoscopy

*Diagnosing eye
conditions from retinal
fundus photographs

General Al




Narrow Al

One Study (data source) — multiple

data types

One Study (data source) — one data
type

One Study (data source) — one data
type

One Study {data source) — one data
typ

a Current Al approaches

Broad Al

Future Al approaches



Who/What needs to come together?

« Biologists/Biomedical
Scientists

 Engineers
 Mathematicians

o Statisticians
 Computer Scientists
 Physicists
 Chemists

(@)

O O 0O O 0O O O O

Next-generation Al methods?

Transfer learning

Artificial general intelligence

End-to-end learning (in DL)

Tabula rasa learning theory

Bayesian networks and inference
Pearl-esque probabilistic causal learning
Monte Carlo simulation and tree search
Hypothesis-free, unsupervised DL
High-scale modeling for prediction and forward
simulation

Quantume-inspired optimizations, including
sampling, minimization, and training neural
networks

 Clinicians

Model complexity

e Economists
* Philosophers

& <<,<\°’e

Human interpretability

* Anthropologists

Prosperi et al. BMIC Medical Informatics and Decision Making (2018)



Grand Challenges

that integrate all types of
biomedical and Health Records
behavioral data to

predict health outcomes

Genomics

GAcGTTA

Environmental
Social

f
¥,

__.—l-"'"

Early risk prediction

Differential diagnosis

Time
Disease

Treatment Optimization

: : .. .. Medications
From: Big data hurdles in precision medicine

and precision public health u
Prosperi et al. BMC Medical Informatics and '

Decision Making (2018) .



https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-018-0719-2

Some Environmental Factors Influencing Outcomes
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Precision public health. Community, societal and ecological factors must be accounted on top of the individual-based, fine-
grained approach for precision medicine. The map is an edited version of a Wikimedia Commons image
(https://commons.wikimedia.org/wiki/File:United States Administrative Divisions Blank.png, licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported)

Prosperi et al. BMC Medical Informatics and Decision Making (2018)




Grand Challenge Use Cases

= Connecting multiple pieces of information for research
Integrating heterogenous, variable, uncertain data
Finding the hidden signals to derive knowledge and insight

= Wearables give a "movie for health”
How to read between the lines of data
Finding the signal we never saw before

= Generalizing from known diseases to rare diseases
* Finding the mechanisms of health restoration



Discovering Theories & Knowledge = INSIGHT

Theoretical Model Sparse Uncertain
Constructs g Data =  Data
Parameters
Competing Model Missing Data
Uhearttes Uncertainty
Heterogeneous Disparate Model Data
talE Knowledge Simulations Maps

¥

Models & Data across species, spatiotemporal scales,
behavioral tasks

¥

Reveal Emergent Dynamics, Hidden Rules
- Integrated Theories

Development and implementation of a machine-driven knowledge integration process for discovery




e
1960: A Vision for Cognitive Assistance

“In not too many years, human brains and computing machines will be
coupled together very tightly, and the resulting partnership will think as no
human brain has ever thought!”

--JCR Licklider

Visionary psychologist and computer scientist

Funded research that led to most of modern computing

Google Car, 2018

-k, Novembeb;i 9

Tesla Tf

Oakley Radar Pace

e https://www.youtube.com/watch?v=-S4V1TS4yFk

Radar Pace, available online


https://www.youtube.com/watch?v=-S4V1TS4yFk

Al can change how we gather data,
not just how we interpret it

Learned reconstruction with neural networks
data information

Z
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Direct to information

data information
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AI to Extract Human Intelligence
(not human stupidity)

= Integrating the right types of data

= attheright time

= within the right context at (this point in time)
= Avoiding human biases

= coding for ethics and (human?) learning

= Al research for ethics
= Incorporating the totality of the data

= without collecting ALL the data

= Stitching together SMALL data

= Re-engineering the Future of Health
~ Understanding the mechanisms of prevention, diagnosis and treatment




Stay Tuned!

Vision: To Propel Progress in Biomedical Research through NEXT-GENERATION Al (beyond Narrow Al to Broad Al)
Culture Change: Biomedical experiments designed for next-gen Al 2 Al designed for biomedical experiments*
3 Pillars: People (multiple disciplines), Data (transformational), Ethics (data bias and transparency)
Goals/Outcomes after 7 years (FY21-27, ~S200M):

» Al Design Centers for the Biomedical Community — data design and assessment, ethics and training

» New “Gold Data” that can be mined with future Al methods

» Ability to “stitch” Gold Data with existing data (across sites, protocols, processing methods)

» Next generation discoveries for biomedical research, powered by next-gen Al
Partnerships: DARPA, NSF, DOE, FDA, ...

* Includes biological and behavioral studies

Immediate Timeline:

October 27-28, 2020: Community Workshop in partnership with DARPA
Synergistic Discovery and Design (SD2) program

Fall 2020: Release of Funding Opportunities for DEFINE Al Design Centers
inspired by Biomedical Grand Challenges

Fall-Winter 2021: Formation of Multidisciplinary Teams, Vet Grand Challenge
Ideas = Online breakout groups for each Grand Challenge idea




ThankYou!

Grace C.Y. Peng

grace.peng@nih.gov
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