RE-ENGINEERING THE FUTURE OF HEALTH WITH PREDICTIVE MODELS

National Institute of Biomedical Imaging and Bioengineering

New York Scientific Data Summit (NYSDS) Grace C.Y. Peng, Ph.D. October 22, 2020 Virtual

The Future of Health

- Real-time measurements
- Digital Twins
- Salutogenesis

Predictive Modeling

- Types
- Process
- Credible practice

Biomedical and Behavioral Research Culture

- Modeling approaches
- Data landscape
- Heterogeneity and uncertainty

How do we get there?

- Integrate heterogeneous data
- Standardize processes for credible, reusable models
- Next Gen Models to predict and provide insight

THE FUTURE OF HEALTH

The Future of Health

Future Medicine: Dynamic data, Digital Health

National Institute of Biomedical Imaging and Bioengineering

Mobile Health & Sensor Technology

Wearable Health Devices – Vital Sign Monitoring, Systems, and Technologies

Digital Twins

- HEALTHCARE
- Predict and prevent adverse events
- Planned interventions
- Extend quality of life
- Extend life

DIGITAL TWINS IN CHRONIC DISEASE

A NEAR-REAL-TIME LINKAGE BETWEEN PHYSICAL AND DIGITAL WORLDS

11 NIH-IMAG | 24 October 2019 | Copyright, Medtronic all rights reserved

*The Digital Twin: Compressing time-to-value for digital industrial companies, GE

Curtesy of MARK PALMER, MD, PHD Distinguished Scientist, Strategic Scientific Operations, Medtronic

Salutogenesis

PREDICTIVE MODELING

Biological Spatiotemporal Scales

Hunter and Borg, Nature 2003

Why Model?

- Infrastructure for systematically archiving and transferring knowledge
 - Prevent reinventing processes year after year
- Only way to predict outcomes not otherwise testable
- Drive scientific discovery
 → emergent properties
- Extend insight and understanding beyond the cognitive capabilities of the human mind

Model-Driven Science

 \rightarrow Predictions

Modeling & Simulation

 \rightarrow Testable hypotheses

Predictive Modeling

Predictive models generate new hypotheses, and do not merely recapitulate the data that were used to build them. [2003-present: IMAG Multiscale Modeling Initiative]

Quantitative Measures

Winslow et al., 2012

High Performance Computing – the AI wave

Mechanistic Models to drive **better** simulations

Alber, M., Buganza Tepole, A., Cannon, W.R. *et al.** **Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences**. *npj Digit. Med.* **2**, 115 (2019). https://doi.org/10.1038/s41746-019-0193-y

Peng, G.C.Y., Alber, M., Buganza Tepole, A. *et al.** Multiscale Modeling Meets Machine Learning: What Can We Learn?. *Arch Computat Methods Eng* (2020). https://doi.org/10.1007/s11831-020-09405-5

Simtk	Search for projects Projects V About V S	ign Up Log In
CFMS C	redible Practice of Modeling & imulation in Healthcare	f & (5) Follow (5) Join (18)
About Down	loads Documents Forums Wiki Source Code News	
Wiki	Just Published!	
RecentChanges F Immutable Page Inf	Erdemir, A., Mulugeta, L., Ku, J.P. <i>et al.</i> Credible practice of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective . <i>J Transl Med</i> 18, 369 (2020). https://doi.org/10.1186/s12967-020-02540-4	Titles Text
1. Ten Simple 1. Comm 2. Comm	Rules of Credible Practice ittee Perspective unity Perspective	

Ten Simple Rules of Credible Practice

One of the first tasks of the Committee was to identify best practices to enhance credibility of modeling & simulation in healthcare. This activity started as a Committee discussion, where CPMS Task Teams have been tasked with generating a list of ten key elements or simple rules of credible practice (Committee Perspective). As the Committee discussions finalized, the group agreed on the pecessity to reach out to the broader population of stake holders. In result, the Committee launched a public survey to establish the

or simple rules of credible practice (Committee Perspective). As the Committee discussions finalized, the group agreed on the necessity to reach out to the broader population of stake holders. In result, the Committee launched a public survey to establish the

Now Applied to COVID-19

MULTISCALE MODELING CONSORTIUM

Ten Simple Rules for Model Credibility

- 1. Define context clearly
- 2. Use appropriate data
- 3. Evaluate within context
- 4. List limitations explicitly
- 5. Use version control
- 6. Document adequately
- 7. Disseminate broadly
- 8. Conduct independent reviews
- 9. Test competing implementations
- 10. Conform to standards

Content	A Structure	Appearance	🛉 Extend	I 🔧 Configural	tion 🦺 P	eople 📲 Reg	oorts 🛛 🚱 H	elp
		U.S. Departmen	it of Health & H	uman Services 👌 D	National Insti	lutes of Health $ angle$	National Ins	litute of Bi
		IMAG	Interagence Analysis G	/ Modeling And roup				
		HOME	ABOUT IMAG	NEWS & EVENTS	FUNDING	RESOURCES	ACTIVITIES	CURRI
Ve		10 Simp	le Rules	with Confo	rmance	Rubric		
		View Edit	Delete Re	visions				
Tala	DPI	The TSR is	a communicatio	n tool for modelers to	organize their	model developmen	nt process and p	resent it c
		 Image of onl 	ine TSR fillable	form (for continuous	updating):			
1-4 AS	No.	image of resi	surce credibility for	m				
1 2 1 20		Go to CPMS	WG page (and	I IMAG FAQ page) fo	r instructions to	fill out the TSR		
		Instruction	ns for Evalu	ating Resource	Credibility:			
		Please evaluate y into the ten numb	our model for each sered blue boxes or	of the Ten Simple Rules, w the following slides. Also	which are listed for , for each rule, ind	you in the table below cate "conformance lev	and organized el" in the orange	
		project progresse	• Ten Sim	ple Rules for Ev	aluating M	odel Credibili	ty	
			(also ado)	oted for Analysis To	ols and Datab	ases):		
		Rule	•		Descripti	on		
		R1 - Define	Deve	lop and docume	nt the subjec	t, purpose, and	lintended	
		context cl	early use(s	of the model or	simulation.	and the second second		
1		K2 - Use	Empl	by relevant and tr	aceable into	rmation in the		

C A @ imagwik

NIH

MULTISCALE MODELING CONSORTIUM IMAG

Task Force on Basic Science Applications

- Biomechanics Working Group
- <u>Computational Neuroscience Working Group</u>
- Integrated multiscale biomaterials experiment and modeling group (ImuBEAM)

Task Force on Dissemination

MSM Task Forces

- <u>Committee on Credible Practice of Modeling</u>
 <u>& Simulation in Healthcare Description</u>
- Model and Data Sharing Working Group
- Public Dissemination and Education

Task Force on Clinical Translation

- <u>Clinical and Translational Issues</u>
- MSM for Medical Devices

Task Force on Methodologies

- <u>Cell-to-Macroscale Working Group</u>
- High Performance Computing Working
 <u>Group</u>
- <u>Multiscale Systems Biology Working Group</u>
- <u>Theoretical and Computational Methods</u>
- Population Modeling Working Group

Multiscale Modeling and Viral Pandemics

Greater than the sum of its parts

MULTISCALE MODELING CONSORTIUM

Interagency Modeling and Analysis Group (IMAG) <u>Wiki</u> (Search: IMAG Wiki)

BIOMEDICAL AND BEHAVIORAL RESEARCH CULTURE

Biological Spatiotemporal Scales

heal.nih.gov/news/stories/bacpac-low-back-pain Image: U.S. Department of Health & Human Services National Institutes of Health Image: National Institutes of Health About Research Funding News & Events Resources Search Search Piecing Together the Puzzle of Chronic Low Back Pain

A computer model may be able to inspire new insights and treatments.

Home / News & Events / Research Spotlights / Piecing Together the Puzzle of Chronic Low Back Pain

The human back is a complex structure with bones, nerves, tendons, discs, and more — all places where something can go wrong and cause pain, which, for many people, becomes a long-term or chronic problem. Life stresses and other medical and mental health conditions aggravate the problem.

With so many pieces, it's hard to get a holistic view of the puzzle or pinpoint the cause of the pain.

"People tend to focus on one aspect or another," said Jeffrey Lotz , Ph.D., a medical engineer who studies back pain at the University of California, San Francisco. "Some people think it's largely in the mind: some people think

Models, such as this plastic replica of the spine, are representations

Lower Back Pain

Built on the Foundation of the Biopsychosocial Concept

BACPAC Theoretical Model WG

BACPAC Research Agenda – Goal 1 State-of-the-Art Model for Chronic Low Back Pain

Develop a theoretical model for chronic low back pain

BACPAC Research Agenda – Goal 2 Identify factors that are predictive of treatment effectiveness for well-defined patient subpopulations

• Develop Testable Hypotheses

BACPAC Research Agenda – Goal 3 Develop an algorithm for multi-modal interventions for individuals with different phenotypes of chronic low back pain

• Design and conduct a large-scale adaptive cLBP trial that tests multiple bundled or sequential interventions

June 2020

<u>SPARC</u>

Inputs

- Stimulus design
 - Frequency
 - Amplitude
 - Duration
 - Duty Cycle
- Electrode design and placement
- Animal model
- Disease model/phenotype
- Physiological recordings (for informing closed-loop stimulation)

Outputs

- Change in organ function (on- and offtarget effects)
- Biomarkers
- Change in electrode interface (e.g. impedance)
- Plasticity/adaptation

CFDE

 Making data from Common Fund programs FAIR

Experiment types		GTEx	HMP/iHMP	LINCS	Metabolomics	SPARC	4D Nucleome	MoTrPAC	Kids First
Genomics	Whole genome/exome sequencing								
	Omni SNP Arrays								
	16S metagenomic sequence	_							
	Epigenomics								
Transcriptomics	RNA/miRNA/mRNA-Seq								
	Array or L1000 platform based								
Metabolomics	Mass Spectrometry (GCMS, LCMS)								
	NMR								
	Lipidomics								
Proteomics	Mass Spec based								
	Microarray based								
Imaging	Fluorescence based								
	Histology/Cytology								
	Radiology (MRI)								
In Vitro	Binding Assays								
	Immuno Assays								
In/ex vivo	Neural stimulation/neural activity recording								
	High resolution manometry								
Code	Analysis Workflow								

Hardware Exists, Research Methodologies Lag

- Quantified self and health monitoring technologies are evolving rapidly; data is often proprietary
- Challenges
 - Methods for dealing with data size and complexity
 - Validation of models for application in clinical research and trials
 - Multidimensional interpretation of data
 - Ethics of use, provenance of data, and regulatory strategies

Biomedical and Behavioral Research Challenges

HOW DO WE GET THERE?

The NIH Artificial Intelligence Initiative through 2028 (acronym TBD)

 \rightarrow To Propel Progress in Biomedical Research through NEXT-GENERATION AI

NIH AI Working Group Recommendations (12/13/2019 ACD Report)

Parallel Revolutions: Fusing Biomedicine and Machine Learning (12/13/2019 ACD Report)

Data Generation

more data about the biology and health of more individuals than ever before

<u>Data Analysis</u>

machine learning, other forms of artificial intelligence, cloud computing

ML-BioMed

- biomedical experiments^{*}
 that are designed for ML
- ML that's designed for biomedical experiments^{*}

*Note: Biomedical experiments include biological and behavioral studies

(1) Support flagship data generation efforts to propel progress by the scientific community.

Support flagship efforts that generate large-scale experimental data, with billions of data points designed to:

- i. be well-suited for ML analysis and inference
- ii. address key biomedical challenges
- iii. stimulate new approaches in machine learning

And that implement processes designed to:

- i. develop improved criteria and technical mechanisms for data access
- ii. strengthen ethical criteria for dataset use (consent, privacy, accountability, ...)

Projects should:

- address key biomedical challenges using ML methods
- advance ML methods for future use in biomedicine
- produce transformative data sets, designed with ML in mind
- propel new ways to gather massive data in biomedicine
- involve strong engagement from leading ML researchers

Project review should:

incorporate expertise in ML as well as traditional biomedical domains

ethics

Overall Initiative Goals

- Establish a launchpad for widespread adoption of Next-Generation AI
- Create next generation Al-driven scientific design and assessment frameworks

- Enable transformative data collection around grand challenges in biomedical research
 - Challenges that are currently beyond our human intuition and require next-generation Al approaches to solve
 - All future challenges to use adoptive framework

Artificial Intelligence – what's next-gen?

•Diagnosing eye conditions from retinal fundus photographs

Narrow Al

Broad AI

Who/What needs to come together?

- Biologists/Biomedical Scientists
- Engineers
- Mathematicians
- Statisticians
- Computer Scientists
- Physicists
- Chemists
- Clinicians
- Economists
- Philosophers
- Anthropologists

- Transfer learning
- Artificial general intelligence
- End-to-end learning (in DL)
- Tabula rasa learning theory
- \circ $\;$ Bayesian networks and inference
- Pearl-esque probabilistic causal learning
- \circ $\,$ Monte Carlo simulation and tree search $\,$
- o Hypothesis-free, unsupervised DL
- High-scale modeling for prediction and forward simulation
- Quantum-inspired optimizations, including sampling, minimization, and training neural networks

Grand Challenges

that integrate all types of biomedical and behavioral data to predict health outcomes

From: <u>Big data hurdles in precision medicine</u> <u>and precision public health</u> Prosperi et al. BMC Medical Informatics and Decision Making (2018)

Some Environmental Factors Influencing Outcomes

Precision public health. Community, societal and ecological factors must be accounted on top of the individual-based, finegrained approach for precision medicine. The map is an edited version of a Wikimedia Commons image (<u>https://commons.wikimedia.org/wiki/File:United States Administrative Divisions Blank.png</u>, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported) *Prosperi et al. BMC Medical Informatics and Decision Making (2018)*

Grand Challenge Use Cases

- Connecting multiple pieces of information for research
 - Integrating heterogenous, variable, uncertain data
 - Finding the hidden signals to derive knowledge and insight
- Wearables give a "movie for health"
 How to read between the lines of data
 Finding the signal we never saw before

- Generalizing from known diseases to rare diseases
- Finding the mechanisms of health restoration

Discovering Theories & Knowledge \rightarrow INSIGHT

Development and implementation of a machine-driven knowledge integration process for discovery

1960: A Vision for Cognitive Assistance

"In not too many years, human brains and computing machines will be coupled together very tightly, and the resulting partnership will think as no human brain has ever thought!"

--JCR Licklider

Visionary psychologist and computer scientist Funded research that led to most of modern computing

Tesla Truck, November 2019

Google Car, 2018

Oakley Radar Pace

• <u>https://www.youtube.com/watch?v=-S4V1TS4yFk</u>

Radar Pace, available online

Al can change how we gather data, not just how we interpret it

Learned reconstruction with neural networks

data

information

I²R

DK Sodickson, P41 EB017183-05S1

Direct to information

data

information

DK Sodickson, P41 EB017183-05S1

AI to Extract Human Intelligence (not human stupidity)

- Integrating the right types of data
 - at the right time
 - within the right context at (this point in time)
- Avoiding human biases
 - coding for ethics and (human?) learning
 - AI research for ethics
- Incorporating the totality of the data
 - without collecting ALL the data
 - Stitching together SMALL data
- Re-engineering the Future of Health
 - Understanding the mechanisms of prevention, diagnosis and treatment
 - Lowering healthcare costs

Vision: To Propel Progress in Biomedical Research through **NEXT-GENERATION AI** (beyond Narrow AI to Broad AI) *Culture Change:* Biomedical experiments designed for next-gen AI \rightarrow AI designed for biomedical experiments* *3 Pillars:* People (multiple disciplines), Data (transformational), Ethics (data bias and transparency) *Goals/Outcomes after 7 years (FY21-27, ~\$200M):*

- > AI Design Centers for the Biomedical Community --- data design and assessment, ethics and training
- New "Gold Data" that can be mined with future AI methods
- > Ability to "stitch" Gold Data with existing data (across sites, protocols, processing methods)
- Next generation discoveries for biomedical research, powered by next-gen AI Partnerships: DARPA, NSF, DOE, FDA, ...

* Includes biological and behavioral studies

Immediate Timeline:

October 27-28, 2020: Community Workshop in partnership with DARPA Synergistic Discovery and Design (SD2) program

Fall 2020: Release of Funding Opportunities for DEFINE AI Design Centers inspired by Biomedical Grand Challenges

Fall-Winter 2021: Formation of Multidisciplinary Teams, Vet Grand Challenge Ideas → Online breakout groups for each Grand Challenge idea

Thank You!

