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Identifying resonance spin assignments is tricky
• Process of fitting R-matrix to data can 

be difficult, time consuming and may 
not be reproducible 

• The Atlas is rife with misclassified 
resonances! 

• Often done with trial, error and 
significant human intervention
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Identifying resonance spin assignments is tricky

• Simple and robust method 
• Convert resonances into features 
• Cannot train and test on real data:  

• Synthetic resonances based on the statistical properties of real 
nuclei 

• “Jumble” these sequences to mimic mis-assignments 
• Split jumbled data into training and test sets 
• Assess accuracy of predictions 

• Apply trained algorithm to sequence of real experimental data

• Process of fitting R-matrix to data can 
be difficult, time consuming and may 
not be reproducible 

• The Atlas is rife with misclassified 
resonances! 

• Often done with trial, error and 
significant human intervention

?
?

Too many  
s-waves, 

misclassified 
resonances!

* Fig. taken from K.M. Mendez et al. Metabolomics 15, 142 (2019) https://doi.org/10.1007/s11306-019-1608-0

Machine Learning approach

Lightweight scikit-learn classifiers + 
clever problem design may do the trick!
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Using SHAP to assess feature impact 
in classification
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• Preliminary tests with an initial set of features 
using Decision Trees and Random Forests 
have shown signs of overfitting 

• Used SHapley Additive exPlanations (SHAP) 
to quantify this 

• Identified many unimportant features and an 
over-reliance on features related to Γγ 

• Redefined set of features and implemented 
option to turn on and off Γγ
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• Spacings: 
• Use “signed p-value” of spacing relative to Wigner dist. 
• If spacing too small, signal with minus sign (indicates 

resonance in wrong sequence) 
• If spacing too big, indicates missing resonance 

• Test both spacing to left & right 
• GOE imposes short-long-short-long pattern 
• Experiment with spacing-spacing correlation for same purpose 

• Elastic & Fission widths  
• Use diff to mean width as using Porter-Thomas leads to lower 

accuracy for small ν 
• Don’t use capture width by default as prone to exp. bias 
• All features scaled to remove dependence on nucleus average 

parameters 
• Use for all spingroups so can get signal for right/wrong 

assignments

Revised feature selection: Spacings & Widths

Capture widths are dangerous:  
 
It is common for experimenter to specify width based on 
spin group assignment: Circular reasoning!
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238U training set 
3 spin groups,  
L and J labeling

Default parametrization straight out 
of scikit-learn… 

…we can do better!



Optimizing the training step

6

238U training set 
3 spin groups,  
L and J labeling

Default parametrization straight out 
of scikit-learn… 

…we can do better!

• Grid search of hyper-parameters 
• Began by varying the number of trees in a 

Random Forest 
• Extended to ALL hyper-parameters for ALL 

classifiers in scikit-learn 
• Did many runs so accuracies could be 

averaged 
• Automated batch run to use the 400+ cores 

(144 dedicated to serial jobs) in the the NNDC 
computer cluster 

• Ran with both Γγ feature on and off 
• Classification by L and spin-group 
• SO MUCH data that we’re still processing them
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Maximum number 
of iterations makes 
significant impact!
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Maximum number 
of iterations makes 
significant impact!

Different regularizer, 
same conclusion
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Validating with polarized 
data - 115In

9

• Polarized-beam data offers more reliable information 
about the resonance spin 

• We can use such data to validate our re-classification 
• Out of many candidates, chose 115In (many points!) 
• Purposefully misassigned some of the exp. resonances 

to investigate the behavior of the classifier
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Conclusion and future perspectives
• We developed a Machine-Learning method to properly assign spins to neutron resonances: automated, 

general, reproducible 
• Fully integrated with evaluated resonances in the Atlas: automation of new editions 
• Transfer learning:  

• Train and optimize in synthetic data 
• Validate and deploy to real experimental resonances 

• Very encouraging results!  
• Will explore other classifiers and hyper-parameter combinations 
• Will try to validate further with well-known nucleus (e.g. 235U) 
• Thanks to all interns who worked and/or are collaborating on this project:

10Sophia Hollick Sergey Scoville Pedro Rodriguez Mary Fucci Sergio Ruiz Rose-Marie Crawford
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