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Introduction: keywords

@ Neural network, examples of application: natural language processing,
image processing, artificial intelligence etc.

e Partial differential equations (PDEs), examples of application:
atmospheric and ocean dynamics, water wave theory, weather and
climate science etc.

e Fourier neural operator (FNO): introduced by Li et al. in
[1] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede
Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar,
Fourier Neural Operator for Parametric Partial Differential Equations,
arXiv:2010.08895v3.
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Neural network and numerical methods: comparison

@ Classical numerical methods: Time consuming, high computational
requirements on fine mesh
o Classical neural operator: Defined by matrix multiplication, Learn

mappings between finite dimensional vector spaces.

e Fourier neural operator (FNO): Defined by integral convolution on
functions.
Advantage of FNO:

» Time-efficient

» Independent of spatial or temporal discretization

» Independent of PDE parameters

» Learn mappings between inifinite dimensional Banach spaces, i.e.

directly take functions as input and output data.
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Purpose of this project

e Expand examples from [1] for Burgers' equation:

» Including different types of initial conditions
» modifying the neural network architecture

Examine examples on Korteweg—De Vries (KdV) equation

Test accuracy of FNO for both cases

o Neural network structure & initial implementation source:
https://github.com/zongyi-1i/fourier_neural_operator
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https://github.com/zongyi-li/fourier_neural_operator

Structure of neural network

@ lteration updates:

v (x) = o (Wi () + (K(@; 6)) (), (1)

v: hidden layers

o: activation function

W: linear weight transformation
KC: integral kernal

v vy VvYy

@ Characterization of K:
(1@ o)) = [ ol = vty @)
D
e Apply Fourier and inverse Fourier transform onto (2):
(K@) (x) = F7H(Flrp) F(ve(x)) )
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Structure of the neural network

@ Definition of Fourier neural network:
(ko) (x) = F 7 (RoF(w)), (3)

where Ry is the Fourier transform of some periodic function &.
@ Other parameters of the neural network:
Activation function: RelLU
Optimizer: Adam
Learning rate: 0.001
Number of epochs: 500

v

v vyy
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Burgers' equation

Burgers' equation takes the form

Ur + Uty = vue, x € (0,1), t€(0,1)
U(Xu 0) = UO(X)7 X € (07 1)

Learning settings
@ input a = (up(x),v)
e output u = u(x,1)
o Initial conditions ugy are generated from a normal distribution
p=N(0,0*(=A+721)7)
o v is randomly selected in [1/1000,1/100]

o = = = = 9vDQQ
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Burgers' equation: predictions on smooth initial curves
Training data set
@ Neural network | (Tr1): 15 initial conditions x 100 viscosities

@ Neural network Il (Tr2): 150 initial conditions x 10 viscosities
@ Neural network Il (Tr3): 1500 initial conditions x 1 viscosity

o Testing data setl (T1): 40 initial conditions x 10 viscosities

o Testing data set2 (T2): 4 initial conditions x 100 viscosities

[m]

= = E T 9
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Burgers' equation: predictions on smooth initial curves

Training data set
@ Neural network | (Trl): 15 initial conditions x 100 viscosities
@ Neural network Il (Tr2): 150 initial conditions x 10 viscosities

@ Neural network Il (Tr3): 1500 initial conditions x 1 viscosity

Plots of loss during epochs:
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Figure 1: Loss during epochs for test data set T1
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Burgers' equation: predictions on smooth initial curves

Training data set
@ Neural network | (Trl): 15 initial conditions x 100 viscosities
@ Neural network Il (Tr2): 150 initial conditions x 10 viscosities

@ Neural network Il (Tr3): 1500 initial conditions x 1 viscosity

Plots of loss during epochs:
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Figure 2: Loss during epochs for test data set T2
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Burgers' equation: predictions on smooth initial curves

Training data set
@ Neural network | (Tr1): 15 initial conditions x 100 viscosities
@ Neural network Il (Tr2): 150 initial conditions x 10 viscosities

@ Neural network Il (Tr3): 1500 initial conditions x 1 viscosity

(a) Tr1 (b) Tr2 (c) Tr3

Figure 3: Examples of prediction for test data set T1
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Burgers' equation: predictions on smooth initial curves

Training data set
@ Neural network | (Trl): 15 initial conditions x 100 viscosities
@ Neural network Il (Tr2): 150 initial conditions x 10 viscosities

@ Neural network Il (Tr3): 1500 initial conditions x 1 viscosity

(a) Tr1 (b) Tr2 (c) Tr3

Figure 4: Examples of prediction for test data set T2
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Burgers' equation: predictions on smooth initial curves

Training data set

@ Neural network | (Tr1): 15 initial conditions x 100 viscosities

@ Neural network Il (Tr2): 150 initial conditions x 10 viscosities

@ Neural network Il (Tr3): 1500 initial conditions x 1 viscosity
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Figure 5: relationship between loss and viscosity for test data set T1
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Burgers' equation: predictions on smooth initial curves

Training data set
@ Neural network | (Trl): 15 initial conditions x 100 viscosities
@ Neural network Il (Tr2): 150 initial conditions x 10 viscosities

@ Neural network Il (Tr3): 1500 initial conditions x 1 viscosity
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Figure 6: relationship between loss and viscosity for test data set T2
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Try to predict solutions for sharp initial conditions (triangles and squares)

Using previously trained Tr3 to predict:
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Figure 7: Predictions of sharp IC using Tr3
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Burgers' equation: predictions on sharp initial curves

Training data set
@ 1750 initial conditions x 1 viscosity
@ each viscosity is randomly selected from 1/100 - 2/100

@ each initial curve has probability 1/2 to be a triangle or a square

Results of prediction:

Figure 8: Predictions on sharp IC
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Burgers' equation: predictions on sharp initial curves

Test back on normally distributed initial conditions:
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Figure 9: Predictions back on normally distributed IC

@ Training data set: 1500 normally distributed initial curves and 1500
sharp functions (triangles and squares), each corresponds to a
randomly chosen value of viscosity.

@ Testing data set: 200 normally distributed initial curves and 200 sharp
functions (triangles and squares).
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Learning results:

00

02 04 06 08

10

00 02 04 06 08 10
Figure 10: Predictions based on merging training data
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training data set.

The neural network highly depends on the training data, and it only

provides reliable predictions for data coming from the same family of the
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KdV equation

The Korteweg—De Vries (KdV) equation is defined in the following form:

U + tuy + U = 0, x € (0,1), t€(0,1)
u(x,0) = up(x), x€(0,1)

e input a = (up(x),6?)

@ output u = u(x,1)
@ Initial conditions ug are generated from a normal distribution
p=N(0,0%(—A +721)77)

o S = E T 9ac
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1500 initial conditions x one §2

Learning result:
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Using 7000 data and 10000 data:
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Figure 12: Predictions of KdV from model trained with 7000 data (upper) and
10000 data (lower)
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Easier training: fix 52 = 2.4368E — 4,
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Figure 13: Prediction examples and plot for loss
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Relationship between 62 and loss
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Using 30 different 62 to train 30 neural network models
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Figure 14: Plots of loss versus 62
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Conclusion

The neural network can predict solutions very accurately

o for the KdV equation when fixing 62
o for Burgers' equation even if varying the parameter v.
However, it is not able to learn solutions
o to the KdV equation if 62 is varied.
Possible reasons:
e discontinuous behaviour (or changes in the dynamics as 62 changes )

solutions change too much when §% changes

o
@ neural network architecture may need to be modified
o

further neural network hyperparameter tuning may be required
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