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Introduction: keywords

Neural network, examples of application: natural language processing,
image processing, artificial intelligence etc.

Partial differential equations (PDEs), examples of application:
atmospheric and ocean dynamics, water wave theory, weather and
climate science etc.

Fourier neural operator (FNO): introduced by Li et al. in
[1] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede
Liu, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar,
Fourier Neural Operator for Parametric Partial Differential Equations,
arXiv:2010.08895v3.
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Neural network and numerical methods: comparison

Classical numerical methods: Time consuming, high computational
requirements on fine mesh

Classical neural operator: Defined by matrix multiplication, Learn
mappings between finite dimensional vector spaces.

Fourier neural operator (FNO): Defined by integral convolution on
functions.

Advantage of FNO:
I Time-efficient
I Independent of spatial or temporal discretization
I Independent of PDE parameters
I Learn mappings between inifinite dimensional Banach spaces, i.e.

directly take functions as input and output data.
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Purpose of this project

Expand examples from [1] for Burgers’ equation:
I Including different types of initial conditions
I modifying the neural network architecture

Examine examples on Korteweg–De Vries (KdV) equation

Test accuracy of FNO for both cases

Neural network structure & initial implementation source:
https://github.com/zongyi-li/fourier_neural_operator
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Structure of neural network

Iteration updates:

vt+1(x) = σ
(
Wvt(x) + (K(a;φ)vt)(x)

)
, (1)

I v : hidden layers
I σ: activation function
I W : linear weight transformation
I K: integral kernal

Characterization of K:(
K(a;φ)vt

)
(x) =

∫
D
κφ(x − y)vt(y)dy , (2)

Apply Fourier and inverse Fourier transform onto (2):(
K(φ)vt

)
(x) = F−1

(
F(κφ)F(vt(x))

)
.
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Structure of the neural network

Definition of Fourier neural network:(
Kvt

)
(x) = F−1

(
RφF(vt)

)
, (3)

where Rφ is the Fourier transform of some periodic function κ.

Other parameters of the neural network:
I Activation function: ReLU
I Optimizer: Adam
I Learning rate: 0.001
I Number of epochs: 500
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Burgers’ equation

Burgers’ equation takes the form{
ut + uux = νuxx , x ∈ (0, 1), t ∈ (0, 1)

u(x , 0) = u0(x), x ∈ (0, 1)

Learning settings

input a = (u0(x), ν)

output u = u(x , 1)

Initial conditions u0 are generated from a normal distribution
µ = N (0, σ2(−∆ + τ2I )−γ)

ν is randomly selected in [1/1000, 1/100]

Jiawei Sun: The Ohio State University Vanessa López-Marrero: Brookhaven National Laboratory Nathan Urban: Brookhaven National LaboratoryDeep neural network methods for partial differential equationsNYSDS’21, October 26-29, 2021 7 / 27



Burgers’ equation: predictions on smooth initial curves

Training data set

Neural network I (Tr1): 15 initial conditions × 100 viscosities

Neural network II (Tr2): 150 initial conditions × 10 viscosities

Neural network III (Tr3): 1500 initial conditions × 1 viscosity

Testing data set

Testing data set1 (T1): 40 initial conditions × 10 viscosities

Testing data set2 (T2): 4 initial conditions × 100 viscosities
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Burgers’ equation: predictions on smooth initial curves

Training data set

Neural network I (Tr1): 15 initial conditions × 100 viscosities

Neural network II (Tr2): 150 initial conditions × 10 viscosities

Neural network III (Tr3): 1500 initial conditions × 1 viscosity

Plots of loss during epochs:

(a) Tr1 (b) Tr2 (c) Tr3

Figure 1: Loss during epochs for test data set T1
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Burgers’ equation: predictions on smooth initial curves

Training data set

Neural network I (Tr1): 15 initial conditions × 100 viscosities

Neural network II (Tr2): 150 initial conditions × 10 viscosities

Neural network III (Tr3): 1500 initial conditions × 1 viscosity

Plots of loss during epochs:

(a) Tr1 (b) Tr2 (c) Tr3

Figure 2: Loss during epochs for test data set T2
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Burgers’ equation: predictions on smooth initial curves

Training data set

Neural network I (Tr1): 15 initial conditions × 100 viscosities

Neural network II (Tr2): 150 initial conditions × 10 viscosities

Neural network III (Tr3): 1500 initial conditions × 1 viscosity

(a) Tr1 (b) Tr2 (c) Tr3

Figure 3: Examples of prediction for test data set T1
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Burgers’ equation: predictions on smooth initial curves

Training data set

Neural network I (Tr1): 15 initial conditions × 100 viscosities

Neural network II (Tr2): 150 initial conditions × 10 viscosities

Neural network III (Tr3): 1500 initial conditions × 1 viscosity

(a) Tr1 (b) Tr2 (c) Tr3

Figure 4: Examples of prediction for test data set T2
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Burgers’ equation: predictions on smooth initial curves

Training data set

Neural network I (Tr1): 15 initial conditions × 100 viscosities

Neural network II (Tr2): 150 initial conditions × 10 viscosities

Neural network III (Tr3): 1500 initial conditions × 1 viscosity

(a) Tr1 (b) Tr2 (c) Tr3

Figure 5: relationship between loss and viscosity for test data set T1
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Burgers’ equation: predictions on smooth initial curves

Training data set

Neural network I (Tr1): 15 initial conditions × 100 viscosities

Neural network II (Tr2): 150 initial conditions × 10 viscosities

Neural network III (Tr3): 1500 initial conditions × 1 viscosity

(a) Tr1 (b) Tr2 (c) Tr3

Figure 6: relationship between loss and viscosity for test data set T2
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Burgers’ equation: predictions on sharp initial curves

Purpose

Try to predict solutions for sharp initial conditions (triangles and squares)

Using previously trained Tr3 to predict:

Figure 7: Predictions of sharp IC using Tr3
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Burgers’ equation: predictions on sharp initial curves

Training data set

1750 initial conditions × 1 viscosity

each viscosity is randomly selected from 1/100 - 2/100

each initial curve has probability 1/2 to be a triangle or a square

Results of prediction:

Figure 8: Predictions on sharp IC
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Burgers’ equation: predictions on sharp initial curves

Test back on normally distributed initial conditions:

Figure 9: Predictions back on normally distributed IC

Merging training data

Training data set: 1500 normally distributed initial curves and 1500
sharp functions (triangles and squares), each corresponds to a
randomly chosen value of viscosity.

Testing data set: 200 normally distributed initial curves and 200 sharp
functions (triangles and squares).
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Burgers’ equation: Merging training data

Learning results:

Figure 10: Predictions based on merging training data
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Burgers’ equation: conclusion

Conclusion

The neural network highly depends on the training data, and it only
provides reliable predictions for data coming from the same family of the
training data set.
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KdV equation

The Korteweg–De Vries (KdV) equation is defined in the following form:{
ut + uux + δ2uxxx = 0, x ∈ (0, 1), t ∈ (0, 1)

u(x , 0) = u0(x), x ∈ (0, 1)

Learning settings

input a = (u0(x), δ2)

output u = u(x , 1)

Initial conditions u0 are generated from a normal distribution
µ = N (0, σ2(−∆ + τ2I )−γ)
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KdV equation: first attempt

Training data set

1500 initial conditions × one δ2

Learning result:

Figure 11: Predictions of KdV from model trained with 1500 data
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KdV equation: first attempt

Using 7000 data and 10000 data:

Figure 12: Predictions of KdV from model trained with 7000 data (upper) and
10000 data (lower)

Jiawei Sun: The Ohio State University Vanessa López-Marrero: Brookhaven National Laboratory Nathan Urban: Brookhaven National LaboratoryDeep neural network methods for partial differential equationsNYSDS’21, October 26-29, 2021 22 / 27



KdV equation: fixing δ2

Easier training: fix δ2 = 2.4368E − 4,

Figure 13: Prediction examples and plot for loss
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KdV equation: fixing δ2

More trainings with fixed δ2

Using 30 different δ2 to train 30 neural network models

Relationship between δ2 and loss

Figure 14: Plots of loss versus δ2
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Conclusion

Conclusion

The neural network can predict solutions very accurately

for the KdV equation when fixing δ2

for Burgers’ equation even if varying the parameter ν.

However, it is not able to learn solutions

to the KdV equation if δ2 is varied.

Possible reasons:

discontinuous behaviour (or changes in the dynamics as δ2 changes )

solutions change too much when δ2 changes

neural network architecture may need to be modified

further neural network hyperparameter tuning may be required
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