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Introduction

Algorithm
• Goal: tune correctors automatically to 

produce and maintain best electron-ion 
alignment for maximum cooling rate.

• Bayesian optimization (BO) is used to 
optimize an unknown/expensive function 
with as few samples as possible [1].

• Gaussian Process (GP) builds a 
surrogate model for the objective function.

• Acquisition function determines which 
inputs are most likely to generate optimal 
output.

Experiment
• 40 initial samples (using first 4 BPMs in 

the yellow cooling section) that explore 
the entire input domain incrementally are 
obtained from the real LEReC system.

• After training with initial samples, the 
algorithm is used to control electron 
trajectories in the yellow cooling section.

Conclusion
• Bayesian optimization (BO) is effective in 

finding and maintaining good electron and 
ion alignment that optimizes cooling 
performance in the LEReC system. 

• Optimal solution found by the algorithm 
verifies the traditional orbit correction 
program and the BPM calibrations.
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Simulation Results [2]
• The algorithm is trained on 60 random 

samples and produced 15 samples.

Experimental Results [2]
Cooling in Yellow RHIC ring

Cooling in Blue RHIC ring

Figure 1. LEReC cooling section layout.

Figure 2. Comparison of rms and std values of BPM 
values from random samples (blue) and Bayesian 

samples (red).

Figure 3. Comparison of statistical distribution of random 
sample outputs (blue) and Bayesian sample outputs (red).

Figure 4. Experimental results with 40 training samples 
and 20 optimization steps. 

Figure 5. Electron positions are quickly tuned to the 
center and maintained there by the trained BO algorithm.

Electron trajectories
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Future Work
• Physics-informed BO (Fig. 6) uses 

Hessian matrix calculated around 
historical optimum as the covariance 
function for the GP, so it is more efficient 
and needs less data during optimization.

• Contextual GP (Fig. 7) uses composite 
covariance function so it can handle 
varying environmental factors that affect 
objective function value.

Figure 6. Comparison of simulation results from data-
informed BO (top left) and physics-informed BO (top right).
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• Low Energy RHIC Electron Cooling 
(LEReC) improves luminosity for 
operation of the Relativistic Heavy Ion 
Collider (RHIC).

• LEReC is the world’s first electron cooler 
using radio frequency (RF) accelerated 
electron bunches.

• Higher luminosity ion beams result in 
more collision in interaction region, 
generating more useful data.

• Historical data shows LEReC mainly 
cools at small transverse cooling rate.

System Simulator
• LEReC system simulator takes electron 

beam positions and generate simulated 
transverse cooling rate, assuming ion 
beam is at the center 𝑥 = 0, 𝑦 = 0.

• The Bayesian samples are more centered 
around optimal solution 0, with smaller 
root mean square (rms) and standard 
deviation (std) values (Fig. 2), thus having 
higher percentage of faster cooling rate 
(Fig. 3).

• The trained algorithm quickly (in 3 steps 
as shown in Fig. 4) tunes the electron 
positions to the center (correct optimal 
solution) and maintains them there (as 
shown in Fig. 5).

Simulation for Future Work

Figure 7. Comparison of simulation results from physics-
informed BO without contextual GP (top left) and with 

contextual GP (top right).
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