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Introduction

Screening problem

« Effective selection of the potential molecular candidates that meet certain
conditions in an Immense search space has been one of the major concerns in
many real-world biochemistry applications.

 Finding molecules that can proceed to later stages of the drug design protocol against
the COVID-19%.

1. Saadi, A.A., Alfe, D., Babuji, Y., Bhati, A., Blaiszik, B., Brace, A., Brettin, T., Chard, K., Chard, R., Clyde, A. and Coveney, P., 2021, August. Impeccable: Integrated modeling pipeline for covid cure by assessing better
leads. In 50th International Conference on Parallel Processing (pp. 1-12). 3/20



Introduction

Fundamental challenges in the screening problem

1. The number of drug molecules is enormous.
2. The screening cost based on the accurate evaluation platform is expensive.

 Accurate and efficient selection of the potential drug candidates from a huge
set of drug molecules is the key factor determining the success of the

screening problem.
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Introduction

High-Throughput Virtual Screening (HTVS) Pipeline

* HTVS pipeline is one practical approach for the screening problem.
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IMPECCABLE: HTVS for COVID cure!

1. Saadi, A.A., Alfe, D., Babuji, Y., Bhati, A., Blaiszik, B., Brace, A., Brettin, T., Chard, K., Chard, R., Clyde, A. and Coveney, P., 2021, August. Impeccable: Integrated modeling pipeline for covid cure by assessing better
leads. In 50th International Conference on Parallel Processing (pp. 1-12). 5/20



Introduction

Motivation

* To date, there has been no optimal rule to manage such HTVS pipelines.

 Can we optimize the performance of the HTVS pipeline?

1. Can we minimize the (computational) cost?
2. Can we maximize the throughput (the number of potential candidates)?

* We present two optimization frameworks for the HTVS pipeline.
1. A framework that optimizes the throughput given a computational budget constraint.
2. A framework that jointly optimizes the throughput and computational costs.
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Methods

[llustration of the formal HTVS pipeline problem

 Objective: maximizing throughput |Y]|.
« Assumption: screening threshold of the last stage A, IS given by experts.

« Optimization variables: screening thresholds 14, 1,, ..., Ay_1 Of earlier stages
51,85, e, Sy_q.

X : Initial search space
X=X
Stage S1: (f1 : X = R; A15¢1)
Xo={z|lnm=rzeX) >N}
Stage Sz : (f2 : & — R; Agic2)
Xg={z|y2 = fa(z € Xa) > A2}

Xy ={z|yn-1=fv1(z€Xy_1) > An_1}
Stage Sy : (fn : X = R; An;en)

Y:{gj'yN:fN(LEEXN)E)\N} 7/20




Methods

Key Idea of the proposed approaches

1. Estimating the joint score distribution fs(y¢, ¥2, ..., Yn)-
2. Finding A4, 4,, ..., Ay_1 Via the optimization framework.

X : Initial search space
X=X
Stage S1: (f1: X = Ry A15¢1)
X = {z )= /1 (z € X1) = M}
Stage S : (f2 : X = R; A5 ca)
Xa = {z [(y2)= f2 (x € X2) > Do}

Xy ={z |@: In—1(zeXny_1) 2 An_a)

Stage Sy : (fn : X = R; An;en)

Y = {z |(yny) = fv (z € Xn) > An}
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Methods

Key Idea of the proposed approaches

1. Estimating the joint score distribution fs(v4, v, ..., V).
2. FInding 44, 4, ..., Ay_1 Via the optimization framework.

X : Initial search space
X - X]
Stage S1: (f1: X = Ry A15¢1)

Xy = {z |@: fi(zeXy) 2@

Stage Sa @ (f2: & — R; Aa;¢2)

X3 = {2 ()= f2(z € X2) >3}
Xy = {2 IGv D= fv1 (¢ € Xn_1) >GRD)

Stage Sy : (fn : X = R; An;en)

Y = {z |(yny) = fv (z € Xn) > An}
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Methods

Proposed optimization framework under a computation budget constraint

 Optimal screening thresholds ¥* = [17, 45, ..., Ay_1] under fixed
computational budget C

Y* = argmaxr([p, Ay])
1I}€RN_1

S. L. Zl 1 Ci |Xi| <C.

Reward function: (4 = [A4, 45, ..., Ax]) = f---f[;oN,/lN_l A sV, V2, o, Yy)dy1dys - dyy
Cardinality of input set X; of stage S;: |X;| = [X] [ '"f[z,li_l,...,h] fsoi VY2, e, Yic)dy dy, - dyi 4

10/20



Methods

Proposed joint optimization framework

 Optimal screening thresholds ¥* = [17, 15, ..., Ay _4] jointly optimizing
efficiency and throughput

P = é:;‘gery_ig ag([¥, An]) + (1 — a)h ([, Ay D).

Weight parameter: a € [0,1]

r([—coAnD—r(¥.An])
r([=co, /11v])

Relative reward function:g([y, Ay]) =

Yicq ¢ Xl

Normalized total cost function: h([y, Ay]) =

N|X]| max Ci
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Results: Long non-coding RNA (IncRNA) screening

Motivation

 Long non-coding RNAs (IncRNAs) do not encode proteins.

* LncRNASs are closely related to hard-to-treat diseases including Alzheimer’s
disease?34, cardiovascular disease>®, and several types of cancers’ 810,

2.Ng, S.Y., Lin, L., Soh, B.S. and Stanton, L.W., 2013. Long noncoding RNAs in development and disease of the central nervous system. Trends in Genetics, 29(8), pp.461-468.

3.Tan, L., Yu, J.T., Hu, N. and Tan, L., 2013. Non-coding RNAs in Alzheimer's disease. Molecular neurobiology, 47(1), pp.382-393.

4. Luo, Q. and Chen, Y., 2016. Long noncoding RNAs and Alzheimer’s disease. Clinical interventions in aging, 11, p.867.

5. Congrains, A., Kamide, K., Oguro, R., Yasuda, O., Miyata, K., Yamamoto, E., Kawai, T., Kusunoki, H., Yamamoto, H., Takeya, Y. and Yamamoto, K., 2012. Genetic variants at the 9p21 locus contribute to
atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis, 220(2), pp.449-455.

6. Xue, Z., Hennelly, S., Doyle, B., Gulati, A.A., Novikova, I.V., Sanbonmatsu, K.Y. and Boyer, L.A., 2016. A G-rich motif in the INCRNA braveheart interacts with a zinc-finger transcription factor to specify the
cardiovascular lineage. Molecular cell, 64(1), pp.37-50.

7.Yang, G., Lu, X. and Yuan, L., 2014. LncRNA: a link between RNA and cancer. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1839(11), pp.1097-1109.

8. Shi, X., Sun, M., Liu, H., Yao, Y., Kong, R., Chen, F. and Song, Y., 2015. A critical role for the long non-coding RNA GASS5 in proliferation and apoptosis in non-small-cell lung cancer. Molecular carcinogenesis, 54(S1),
pp.E1-E12.

9. Peng, W.X., Koirala, P. and Mo, Y.Y., 2017. LncRNA-mediated regulation of cell signaling in cancer. Oncogene, 36(41), pp.5661-5667.

10. Carlevaro-Fita, J., Lanzds, A., Feuerbach, L., Hong, C., Mas-Ponte, D., Pedersen, J.S. and Johnson, R., 2020. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in 12/20
tumorigenesis. Communications biology, 3(1), pp.1-16.



Results: Long non-coding RNA (IncRNA) screening
Dataset (Human) - GENCODE (v38, May 2021)

Raw dataset

48,752 IncRNA sequences
106,143 protein-coding sequences

Preprocessed dataset

39,785 IncRNA sequences
64,948 protein-coding sequences

* containing only valid characters (A, U, C, and G)
* less than 3,000 nt

* representative (via CD-hit)!!

11. Li, W. and Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), pp.1658-1659.
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Results: Long non-coding RNA (IncRNA) screening

Construction of the HTVS pipeline

CPC2 CPAT PLEK

Algorithm Specificity

CPC2

CPAT

PLEK
LncFinder

0.7154
0.8217
0.7050
0.8329

0.5760
0.6861
0.5666
0.7062

0.9493
0.9817
0.94/8
0.96/8

2.5265
2.71336
83.1765

2,495.623

LncFinder PLEK CPAT CPC2

CPC2 CPAT PLEK

LncFinder

* L_earnt the joint score distribution with 4 % of samples via the EM algorithm
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Results - Long non-coding RNA (IncRNA) screening

Performance of the optimized pipeline under the computational budget constraint

50000 A

40000 -

30000

20000 -

10000

The number of potential candidates

0.0 0.5 1.0 1.5 210 2:5 le8
Total computational budget

10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

[S1,S4] 9,973 20,280 29452 37,071 43250 48,210 50,220 50,265 50,266 50,266

[S2,S4] 10,020 20,418 30,749 40,615 47,400 49,719 50,244 50,266 50,266 50,266

[S3,54] 6,218 15,643 24246 32,032 39,017 44,202 47,696 49,447 50,091 50,254

[S1,S2,854] 10,033 20,364 30,692 40,537 47,365 49,713 50,244 50,266 50,266 50,266

[S1,S83,84] 9,563 19,570 28,678 36,164 42218 47364 50,125 50,252 50,266 50,266

—  [52,81,84] 10,025 20,397 30,765 40,695 47,466 49,717 50,244 50,266 50,266 50,266

[S2,83,84] 9,688 19,753 29,760 39431 46,680 49,467 50,198 50,264 50,266 50,266

—  [53,51,84] 6,530 16,866 26,590 34,663 41,332 46,705 49,974 50,254 50,265 50,266

[S3,52,54] 6,607 16,997 27335 37,464 457742 49,239 50,162 50,264 50,266 50,266

[S1,52,83,854] 9,647 19,711 29,728 39335 46,647 49,456 50,194 50,264 50,266 50,266

[S1,83,82,84] 9,518 19,184 28983 38,729 46,271 49,347 50,160 50,264 50,266 50,266

[S2 S1,83 Sa] 9,692 19,741 29,768 39,393 46,758 49,464 50,197 50,264 50,266 50,266

[S2,83,81,84] 9,677 19,734 29,730 39,393 46,745 49,460 50,197 50,264 50,266 50,266

——  [83,81,52,84] 6,448 16,937 27276 37,429 45,697 49,222 50,158 50,264 50,266 50,266

[S3,82,81,84] 6,601 16,964 27329 37429 45709 49,230 50,159 50,264 50,266 50,266
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LLong non-coding RNA (IncRNA) screening problem

Performance of the jointly optimized HTVS pipeline (& = 0.5)

Configuration CI;EEEE:?;S Total cost (ms) Eﬁ;ez)csttlve Conslssi?gsnal Accuracy  Sensitivity  Specificity F1
[S4] 50, 266 261,374,090 5,200 0% 0.8440 0.9264 0.7936 0.8186
[S1, S4] 48,875 161, 357, 081 3,301 36.52% 0.8429 0.9075 0.8034 0.8144
[S2, S4] 47,950 134, 366, 143 2,802 46.12% 0.8624 0.9215 0.8262 0.8357
[S3, S4] 47,083 176,963, 736 3,758 27.73% 0.8450 0.8876 0.8188 0.8131
[S1,S2, 54] 48,210 134,748,992 2,795 46.25% 0.8600 0.9216 0.8222 0.8333
[S1, S5, 54] 49,100 168,490, 516 3,432 34.00% 0.8442 0.9120 0.8026 0.8164
[S2, S1, 54] 48,214 134,812,024 2,796 46.23% 0.8600 0.9216 0.8222 0.8334
[S2, S3, S4] 48,295 141,710, 246 2,934 43.58% 0.8602 0.9230 0.8218 0.8338
[S3,S1, 54] 49,119 171, 803, 403 3,498 32.73% 0.8444 0.9124 0.8026 0.8166
[S3, S2, S4] 48, 326 146, 100, 080 3,023 41.86% 0.8600 0.9231 0.8214 0.8336
[S1, S2, S3, S4] 48,402 140, 954, 256 2,912 44.00% 0.8591 0.9228 0.8200 0.8326
[S1,S3,S2,S4] 48, 332 141,229,518 2,922 43.81% 0.8587 0.9215 0.8203 0.8321
[S2, S1,S3, S4] 48,409 141,022, 859 2,913 43.98% 0.8591 0.9229 0.8200 0.8326
[S2, S3, 51, S4] 48,414 141, 225, 328 2,917 43.90% 0.8591 0.9230 0.8200 0.8327
[S3,S1, 52, 54] 48,424 145, 321, 388 3,001 42.29% 0.8589 0.9228 0.8197 0.8324
[S3,S2,S51,S4] 48,429 145, 388, 626 3,002 42.27% 0.8589 0.9229 0.8197 0.8325
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Concluding remarks

* We present two computational frameworks optimizing the performance of
HTVS pipelines involving surrogate models with different complexity.

* The key Idea Is to estimate the joint distribution of scores computed at
different stages of the pipeline, based on which the screening thresholds are
optimized to maximize the throughput while minimizing the computational
COosts.
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Concluding remarks

* We first consider the case where the computational budget is fixed, and the
goal is to maximize the throughput within the given budget.

* Next, we consider the case where we aim to maximize the throughput of the
HTVS pipeline while minimizing the overall computational costs at the same
time.
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Concluding remarks

* We demonstrated the performance of the proposed optimization schemes
based on both synthetic and real-world pipeline data. We formed a high-
throughput virtual screening (HTVS) pipeline for screening long non-coding
RNASs (IncRNAS) by integrating various INcRNA prediction algorithms with
different accuracy and computational costs. We showed that our proposed
optimization frameworks can lead to significant computational savings at
Identical (or comparable) screening throughput/accuracy.
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Thank you for watching!

Speaker (Hyun-Myung Woo) e-mail address: larcwind@tamu.edu
Manuscript: https://arxiv.org/abs/2109.11683




