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The Exascale Computing Project (ECP) enables US revolutions in 
technology development; scientific discovery; healthcare; energy, 
economic, and national security

Develop exascale-ready applications and 
solutions that address currently intractable 
problems of strategic importance and 
national interest.

Create and deploy an expanded and 
vertically integrated software stack on 
DOE HPC exascale and pre-exascale 
systems, defining the enduring US exascale
ecosystem.

Deliver US HPC vendor technology 
advances and deploy ECP products to 
DOE HPC pre-exascale and exascale 
systems.

ECP 
mission

Deliver exascale simulation and 
data science innovations and 
solutions to national problems 
that enhance US economic 
competitiveness, change our quality 
of life, and strengthen our national 
security.

ECP 
vision



3

US DOE Office of Science (SC) and National 
Nuclear Security Administration (NNSA) 

The ECP is part of the broader DOE Exascale Computing 
Initiative (ECI)

ECI 
partners

Accelerate R&D, acquisition, and deployment to 
deliver exascale computing capability to DOE 
national labs by the early- to mid-2020s

ECI 
mission

Delivery of an enduring and capable exascale 
computing capability for use by a wide range 
of applications of importance to DOE and the US

ECI 
focus

Exascale
Computing 

Project 
(ECP)

Exascale system 
procurement projects & 

facilities
ALCF-3 (Aurora)

OLCF-5 (Frontier)
ASC ATS-4 (El Capitan)

Selected program 
office application 

development 
(BER, BES, 

NNSA)

Three Major Components of the ECI
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DOE HPC Roadmap to Exascale Systems

LLNL
IBM/NVIDIA

ANL
IBM BG/Q

ORNL
Cray/AMD/NVIDIA

LBNL
HPE/AMD/NVIDIA

LANL/SNL
HPE/Intel

ANL
Intel/HPE

ORNL
HPE/AMD

LLNL
HPE/AMD

LANL/SNL
Cray/Intel  Xeon/KNL

FY 2012 FY 2016 FY 2018 FY 2021

ORNL
IBM/NVIDIA

LLNL
IBM BG/Q

Sequoia

Cori

Trinity

ThetaMira

Titan Summit

ANL
Cray/Intel KNL

LBNL
Cray/Intel  Xeon/KNL

Sierra

FY 2023FY 2022

Exascale 
Systems

Version 2.0

de
co

m
m

is
si

on
ed Aurora

ANL
HPE/AMD/NVIDIA

Polaris
To date, only 
NVIDIA GPUs

AMD, Intel and 
NVIDIA GPUs!
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These systems will present significant challenges and opportunities 
for several aspects of data science and analytics
•Challenges

– Increasing discrepancy between compute and IO speeds
– Extremely large data sets generated by scientific simulations
– GPU architectures are not always well aligned with the tasks associated with data analysis
– Increasing complexity of scientific workflows including multiple simulation codes, AI/ML, analysis

•Opportunities
– Large-scale data analysis through tighter coupling of experimental and HPC facilities
– Use of AI/ML to improve simulations
– Use of HPC and AI/ML for control of experimental facilities
– Community-driven and adopted solutions

The ECP is addressing these challenges and opportunities 
through a variety of projects
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Application Development (AD) Software Technology (ST) Hardware and Integration (HI)

Integrated delivery of ECP products 
on targeted systems at leading DOE 

HPC facilities
6 US HPC vendors 

focused on exascale node and system 
design; application integration and 
software deployment to Facilities

Deliver expanded and vertically 
integrated software stack to achieve 
full potential of exascale computing

71 unique software products 
spanning programming models and 

run times, 
math libraries, 

data and visualization

Develop and enhance the predictive 
capability of applications critical to 

DOE
24 applications 

National security, energy, 
Earth systems, economic security, 

materials, data
6 Co-Design Centers

Machine learning, graph analytics, 
mesh refinement, PDE discretization, 

particles, online data analytics

The ECP is organized into three different technical focus areas

Performant mission and science applications at scale

Aggressive 
RD&D project

Mission apps; integrated 
S/W stack

Deployment to DOE 
HPC Facilities

Hardware 
technology advances
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Addressing data science challenges happens primarily in the ST and 
Co-Design areas and progress is highlighted in applications

Software Technologies
• ALPINE – data analytics and 

visualization tools (PI: J Ahrens, 
LANL)

• ExaWorks – software 
development toolkits for 
complex workflows (PI: D. 
Laney, LLNL)

Co-Design Centers
• CoDAR – compression and 

data analytics (PI: I Foster, 
ANL)

• ExaLearn – machine learning 
(PI: F Alexander, BNL)

Applications
• Candle - ML for cancer research 

(PI: R Stevens, ANL)

• ExaBiome – Computational 
biology and metagenomics (PI: K 
Yelick, LBNL)

• ExaFEL – Experimental Science 
Data (PI: A. Perazzo, SLAC)

General solutions                           Specific Applications

Many many thanks to the great research teams that are conducting this work!
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There are several key applications and technologies that highlight 
data science challenges and solutions at exascale

Software Technologies
• ALPINE – data analytics and 

visualization tools

• ExaWorks – software 
development toolkits for 
complex workflows

Co-Design Centers
• CoDAR – compression and 

data analytics

• ExaLearn – machine learning

Applications
• Candle - ML for cancer 

research

• ExaBiome – Computational 
biology and metagenomics

• ExaFEL – Experimental 
Science Data

General solutions                           Specific Applications
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ECP’s Software Technology effort spans six technical areas

Programming 
Models & Runtimes 

•Enhance and get 
ready for exascale the 
widely used MPI and 
OpenMP 
programming models  
(hybrid programming 
models, deep 
memory copies)

•Development of 
performance 
portability tools (e.g. 
Kokkos and Raja) 

•Support alternate 
models for potential 
benefits and risk 
mitigation: PGAS 
(UPC++/GASNet) 
,task-based models 
(Legion, PaRSEC) 

•Libraries for deep 
memory hierarchy 
and power 
management
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Development 
Tools 

• Continued, 
multifaceted 
capabilities in 
portable, open-
source LLVM 
compiler 
ecosystem to 
support expected 
ECP 
architectures, 
including support 
for F18 

• Performance 
analysis tools that 
accommodate 
new 
architectures, 
programming 
models, e.g., 
PAPI, Tau 

Math Libraries 
•Linear algebra, 
iterative linear 
solvers, direct linear 
solvers, integrators 
and nonlinear 
solvers, 
optimization, FFTs, 
etc

•Performance on new 
node architectures; 
extreme strong 
scalability 

•Advanced 
algorithms for multi-
physics, multiscale 
simulation and 
outer-loop analysis 

•Increasing quality, 
interoperability, 
complementarity of 
math libraries 

Data and 
Visualization

• I/O via the HDF5 
API

• Insightful, 
memory-efficient 
in-situ 
visualization and 
analysis – Data 
reduction via 
scientific data 
compression

• Checkpoint 
restart 

Software 
Ecosystem

•Develop features in 
Spack necessary to 
support all ST 
products in E4S, and 
the AD projects that 
adopt it 

•Development of 
Spack stacks for 
reproducible turnkey 
deployment of large 
collections of 
software

•Workflow software 
development toolkits

•Regular E4S 
releases of the ST 
software stack and 
SDKs with regular 
integration of new 
ST products 

NNSA ST
• Open source 

NNSA Software 
projects

• Projects that have 
both mission role 
and open science 
role

• Major technical 
areas: New 
programming 
abstractions, 
math libraries, 
data and viz 
libraries

• Cover most ST 
technology areas

• Subject to the 
same planning, 
reporting and 
review processes
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Scalable storage 
software 

infrastructure

Interactive 
post-hoc 

approaches Inter
ac

tiv
e 

post-
hoc 

ap
proac

hes
 

Data 
collection, 
reduction, 
transform 

and 
workflow

Applications 
running on 
exascale 

supercomputer 

In situ visualization 
and analysis

Data services
• Checkpoint restart, 

compression, 
coupling, storage  
performance 
tracking 

Storage

Overview of ECP Data and Visualization Portfolio 
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ECP Data and Visualization
Project Name PI Name, Inst Short Description/Objective

Data & Vis SDK Chuck Atkins, Kitware Support the deployment, testing and usage of ECP Data and Visualization 
packages.

ADIOS Scott Klasky, ORNL Supports efficient I/O and code coupling services.

DataLib Rob Ross, ANL Supports efficient I/O including MPI-IO (ROMIO) and PNetCDF, as well as I/O 
monitoring (Darshan) and data services (Mochi)

ECP/VTK-m Ken Moreland, SNL Comprehensive effort to provide VTK-based scientific visualization software that 
supports shared memory parallelism.

VeloC Franck Cappello, ANL VeloC-SZ develops two software products: VeloC (checkpoint restart) and SZ 
(lossy compression with strict error bounds). 

ExaIO Suren Byna, LBNL Efficient system topology and storage hierarchy-aware HDF5 and Unify (node 
local) parallel I/O libraries

ALPINE James Ahrens, LANL
Deliver in situ visualization and analysis algorithms, infrastructure (ALPINE) and 
data reduction of floating-point arrays for reduced memory, communication, I/O, 
and offline storage via advanced data compression (ZFP).

VTK-m running 
on 16K GPUs 

HACC/VeloC: 
improved scaling with 
lower overhead

ZFP: 10x compression 
of simulation state in 

GENE fusion code with 
acceptable loss

ALPINE/WarpX: 
in situ integration 
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ALPINE Overview

Problem: Compute power growing faster than I/O bandwidth; requires running visualization
in situ (during the simulation) to reduce I/O in scientific computing applications

ALPINE delivers in situ visualization and analysis algorithms and infrastructure. 

o Automated in situ massive data reduction algorithms: statistical feature exploration, 
adaptive sampling, topology, task-based feature detection, optimal viewpoint, Lagrangian
flow, …
o Pros:  No or greatly reduced I/O vs post-hoc processing, access to all data, computational power 

is readily available

o Cons: Must know what you are looking for a priori, increasing complexity, memory and network 
constraints

o A portable, scalable, performant in situ infrastructure called Ascent

LibSim
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ALPINE algorithms help ECP scientists make the most of extreme 
datasets

Data Driven Sampling 
enables probabilistic 

identification of 
interesting regions in the 

data automatically, 
prioritizing important 

regions. 

Task-based hierarchical 
feature extraction 
algorithm based on 

segmented merger tree. 
The algorithm is 

implemented using a 
multi-runtime abstraction 
layer, BabelFlow, which 
can be used to execute 
arbitrary analysis and 
visualization dataflows 

using different task-
based runtime systems. 

In situ statistical feature 
detection and 

characterization detects 
user specified features in 
particle data sets using 
statistical data modeling 

and probabilistic 
similarity measures 

Rotation invariant 
pattern detection is 

used to identify bubble 
edges, reducing data by 

saving only areas of 
interest.

Topological analysis is 
used to identify most 
relevant contours and 

create isosurface
visualizations in situ; 
saving only resulting 
images for post hoc 

analysis. 
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ALPINE Infrastructure builds on well known and widely used 
visualization infrastructure

Ascent
• An API that links into a simulation code:

– Making Pictures -- ”scenes”

– Transforming Data – “filter” or “pipeline”
– Capturing Data -- ”publish”

• Efficient distributed memory (MPI) and many-core 
(CUDA or OpenMP) execution; lower memory 
requirements than many tools

• Provides infrastructure for applications to access Vis, 
Storage and Service software technologies 

ParaView & VisIt and their in situ 
libraries (Catalyst and LibSim)
• Long-term DOE investments; two commonly used software 

packages for large-scale visualization and analysis within DOE 
SC and DOE NNSA

• ALPINE developers are ParaView and VisIt developers

• ALPINE will deliver in situ functionality leveraging ECP/VTK-m 
for performance and portability 

Supports 
common 
visualization use 
cases including 
pseudocolor, 
threshold, 
contours, 
isovolumes, 
slices, etc
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ALPINE has enabled new science across a number of domains

Rendering at scale using Ascent
• The 97.8 billion element ICF Rayleigh Taylor mixing simulation ran across 16,384 

GPUs on 4,096 Nodes
• Time-varying evolution of the mixing was visualized in-situ using Ascent, also 

leveraged 16,384 GPUs

• Ascent used VTK-m to run visualization algorithms on the GPUsIdealized Inertial Confinement 
Fusion Simulation

Identifying “voids” or bubble in MFIX-Exa particle data using 
statistical feature detection. L to R: (1) Void selection: box 
shows region of interest with low particle density. (2) Voids as 
seen in density field. (3) Voids in particle field. (4) Feature 
similarity field – how similar to region of interest. (5) Voids are 
isolated by thresholding for analysis and characterization. 

Examples of Rover and Ascent integration to support in 
situ volume rendering and simulated radiography for 
the MARBL simulation code. Used for comparison of 
simulation and experimental data. Native support for 
higher order meshes is in beta development 
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These capabilities are built on vtk-m; a toolkit of scientific 
visualization algorithms for emerging processor architectures

• Supports the fine-grained concurrency for 
data analysis and visualization algorithms 
required to drive extreme scale computing 

• Provides abstract models for data and 
execution that can be applied to a variety of 
algorithms across many different processor 
architectures.

•Redevelop, implement, and support 
necessary visualization algorithms on many-
core architectures

• Leverages performance portability tools such 
as Kokkos

Lagrangian flow 
extracted by VTK-m 
from an EQSIM 
seismic simulation 
run on summit. 

Sampling of an 
ExaSky
cosmology 
simulation run 
on Summit.
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Scientific computing workflows underlie a significant number of 
projects in the ECP portfolio

Problem:
• Many teams are creating infrastructures to:

– couple multiple applications
– manage jobs, sometimes dynamically
– orchestrate compute/analysis and manage data

• There is duplication of effort in these infrastructures
• These customized workflows incur significant costs to port, 

maintain and scale

The costs could be minimized by creating a reliable, 
scalable, portable software development kit (SDK) 
for workflows

This is the goal of the ECP ExaWorks project

ExaWorks Survey in 2020: 
responses from 15/31 ECP 

application teams highlight the 
ad hoc workflows landscape

https://exaworks.org/
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The ExaWorks SDK provides a set of robust, scalable, and 
performance-driven components and APIs to users
• Implemented via community-based approach
• Initial SDK technologies are used in ECP and 

have proven scalability
• Community development activities 

– Definition of inclusion policies and common packaging 
requirements (based on E4S)

– Continuous integration & deployment infrastructure to 
foster adoption and community

– Working toward integration across technologies

– Development of common API’s through an open 
community-based design process

• Initial alpha-release in October:
– https://exaworks.org/; https://github.com/ExaWorks

https://exaworks.org/
https://github.com/ExaWorks
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Application Impact:  3 of 4 Gordon 
bell Covid-19 finalists and three ECP 

applications leveraging ExaWorks 
Technologies

The ExaWorks project is engaging the workflow community and 
DOE facilities and impacting applications

https://www.exascaleproject.org/workflow-technologies-impact-sc20-gordon-bell-covid-19-award-winner-and-two-of-the-three-finalists

Workflows Community Summits: 
January 2021: 45 workflows leaders 
representing 27+ workflow systems 

April 2021: 75+ developers and users

Workflow 
Project 1

Workflow 
Project 2

Workflow 
Project 3

Workflow 
Project 4

Job Submit Lib 
1

Job Submit Lib 
2

Job Submit Lib 
3

Job Submit Lib 
4

HPC Resource 
1

HPC Resource 
2

HPC Resource 
3

HPC Resource 
4

Workflow 
Project 1

Workflow 
Project 2

Workflow 
Project 3

Workflow 
Project 4

PSI/J
HPC Resource 

1
HPC Resource 

2
HPC Resource 

3
HPC Resource 

4

PSI/J: a common portable 
job submission API 

November 2021: ExaWorks & NSF 
WorkflowsRI Facilities Workshop

Specification: https://exaworks.org/job-
api-spec
Reference Python binding: 
https://github.com/ExaWorks/psi-j-python

https://exaworks.org/job-api-spec
https://github.com/ExaWorks/psi-j-python
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The ECP Co-Design portfolio sits one step closer to ECP 
applications

Software Technologies
• ALPINE – data analytics and 

visualization tools

• ExaWorks – software 
development toolkits for 
complex workflows

Co-Design Centers
• CoDAR – compression and 

data analytics

• ExaLearn – machine learning

Applications
• Candle - ML for cancer 

research

• ExaBiome – Computational 
biology and metagenomics

• ExaFEL – Experimental 
Science Data

General solutions                           Specific Applications
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Co-design centers address computational motifs common to 
multiple application projects

Co-design helps to ensure that 
applications effectively utilize

exascale systems

• Pull software and hardware 
developments into applications

• Pushes application requirements 
into software and hardware 
RD&D

• Evolved from best practice 
to an essential element 
of the development cycle

CD Centers focus on a unique 
collection of algorithmic motifs 

invoked by ECP applications

• Motif: algorithmic method that 
drives a common pattern of 
computation and communication

• CD Centers must address all 
high priority motifs used by ECP 
applications, including the new 
motifs associated with data 
science applications

Efficient mechanism 
for delivering next-generation 

community products with broad 
application impact

• Evaluate, deploy, and integrate 
exascale hardware-aware 
software designs and 
technologies for key crosscutting 
algorithmic motifs into 
applications

ExaLearn
Machine 
Learning

ExaGraph
Graph-based 

algorithms

CEED
Finite element 
discretization

AMReX
Block structured 

AMR

COPA
Particles/mesh 

methods

CODAR
Data and 

workflows
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CODAR addresses the challenge of a 1012 disparity between 
computing speed and I/O speed

• Center for Online Data Analysis and Reduction 
(CODAR) Mission
– Identify the best data analysis and reduction algorithms for 

different application classes, in terms of speed, accuracy, 
and resource requirements.

– Quantify tradeoffs in data analysis accuracy, resource 
needs, and overall application performance among various 
data reduction methods. How do these tradeoffs vary with 
exascale hardware and software choices?

– Effectively orchestrate online data analysis and reduction 
to maximize performance and provide flexibility

• A key challenge:  GPUs are not that helpful for internode 
communication bottlenecks

• Key ECP customers: WDMapp, CANDLE,  NWChemEx

ODAR co-
design 
frequently 
involves an 
iterative 
process of 
component 
experiments, 
coupled 
modeling, and 
evaluation 
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Key technologies for CODAR success

SZ Lossy Compression 
Framework

A software framework for data 
and compression error analysis
Features:

• First modular, highly 
customizable/tunable lossy 
compressor (each compression 
stage can use different algorithms)

• Multiple compression error 
controls: Point wise error bounds 
(absolute, relative), statistical error 
bounds (PSNR). Dedicated error 
control for some applications.

• Integrated into ADIOS, HDF5, 
NetCDF, I/O libraries

MGARD Lossy Compressor

MGARD: Multigrid Adaptive 
Reduction of Data, 
based on orthogonal projection
Features:

• Works on tensor product grids and 
cell-based data (triangles and 
tetrahedra)

• Can compress while preserving 
analysis results

• Adaptive in both space and time

https://github.com/CODARcode/MG
ARD

Z-checker

A compression framework for 
scientific data
Features:
• Analyze initial data properties: 

Entropy, statistics
• Analyze the compression error 

with >30 metrics by comparing the 
initial data with decompressed 
data

• Produce a pdf report and 
visualization

• Read ADIOS, HDF5, NetCDF, plain 
binary stream of data

https://github.com/CODARcode/Z-
checker

https://szcompressor.org Tools used in Cosmology, 
Quantum Chemistry, Molecular 
dynamics, etc.
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A community repository providing reference scientific datasets (mostly ECP 
application), compressors (lossless and lossy), and error analysis tools

Features:
• Collection of representative datasets from ECP and other applications via 

direct communication with application developers and users
• Storage of the datasets on the Petrel server at Argonne with Terabytes of 

storage capacity
• Fast access to the datasets using Globus and GridFTP
• Access open to public
Co-design aspects:
• A critical tool to co-design lossy compression schemes for ECP applications
• Existing compressors can be optimized/tunes based on these datasets
• New compression schemes are developed with insurance that the dataset 

are coming from actual users and application developers

Impact:
• Already recognized as a reference source of information for the developers 

of lossy and lossless compressors for scientific data

https://sdrbench.github.io/

One of the unique opportunities ECP has is to provide 
benchmarks for scientific data reduction
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Online reduction Online analysis Online coupling Online aggregation

WDMApp: Fusion 
whole device model

1M atoms, 
1B steps
→ 32 PB 
trajectories

NWChemEx: 
Molecular dynamics

XGC GENEInterpolator

CANDLE:
Cancer deep learning

ExaFEL: 
X-ray laser imaging

Hyperparam. optimization:
103–106 training runs, each 
fitting many parameters

CODAR is targeting several online data analysis and reduction 
motifs for use in applications
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The ExaLearn co-design center is focused on developing machine 
learning technologies along four different application pillars

Surrogates replace 
computationally expensive 

simulations through 
machine learning (ML), 

cheaply
Method Used: Generative 
adversarial networks (GAN) 
and hybrid autoencoders.
Example Applications: 

cosmology

Control allows efficient 
exploration of complex 

problem spaces
Methods Used: 

Reinforcement learning 
(RL) and surrogate models

Example Applications: 
Accelerator control at Fermi 
Lab, self annealing control, 

light source control

Design solves optimization 
problems with simulations 

steered by machine 
learning (ML) and optimal 

experimental design 
methods 

Methods Used: Bayesian 
optimization, message 

passing neural networks, 
Reinforcement learning.  
Example Applications: 

molecular design

Inverse problems use 
machine learning (ML) 

methods to projection from 
observation to original form
Methods Used: Transfer 

Learning, Multitask 
Networks, Convolutional 

Autoencoder
Example Applications: 

predict material structures 
from X-ray or neutron 

scattering profiles. 
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ExaLearn performance portability observations and lessons 
learned as we move to exascale computing platforms
● There are multiple DL frameworks used across 4 application pillars: PyTorch, TensorFlow, 

LBANN
○ All rely on vendor libraries for accelerated linear algebra, and low-latency high-bandwidth communication
○ Vendor-specific DL hardware optimization requires different algorithmic trade-offs (packing, tensor ordering, 

precision)
○ Coupling and interaction between portable libraries (i.e. MPI) and accelerators is clumsy at best – vendor 

specific libraries are at very different levels of maturity (NCCL, RCCL)
● GPU-initiated communication is critical issue for scalable deep learning tools
● Efficient interleaving of accelerated computation streams and communication hardware is 

necessary to avoid stalling GPUs
● Surrogate modeling problems require data sets with large samples that drive demands on 

both GPU memory and parallel file system bandwidth
○ Requires the ability to partition data ingestion of a single sample across parallel ranks to avoid being I/O 

bound
● Complex training algorithms can include multiple instances of DL framework running 

concurrently with multiple scientific “environment” codes
○ Creates heterogeneous compute demands sharing GPUs and CPUs
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Tokamak Fusion Device modeling can leverage all four ExaLearn pillars
• Surrogates 

– ML-created models of conventional HPC particle-in-cell codes for 
plasma physics fusion dynamics (“GTC”)

– Synthetic “digital twins” enabling approximate real-time (RT) 
representation of large-scale HPC fusion simulations (“SGTC”)

• Control
– ML-controlled fusion energy experiments with deployment in RT 

plasma control system (PCS) for DIII-D tokamak

• Design
– ML-generated improved future magnetic confinement fusion systems
– Optimization of proposed ideas for RT plasma behavior within 

“computer design space” for advanced tokamaks

• Inverse problems
– ML projection from experimental observations of plasma states to 

possible earlier states in evolution
– Predicting dynamical plasma structures from high-resolution 

diagnostic data
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ExaLearn Investments Enabled a Gordon Bell Finalist for HPC 
Deep Learning Training at Scale for COVID-19 Research
• Scaled training of molecular generator DNN for ATOM

drug design loop to all of Sierra
– Training on 1.613B molecules achieved 318 PFLOPS

in mixed precision FP16/FP32
– 17.1% peak half-precision efficiency
– ~266,240 node hours over a weekend w/o LBANN SW fault

• Deep learning at scale has center-wide impact → half-precision TensorCores lead to dramatic power swings: 
– Periodic 2-3 MW swings caused concern from power company—frequent 200 KW swings cause center concerns
– Asynchronous learning algorithm minimized center-wide power swings
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Many ECP applications require advanced data analytics and/or 
machine learning to address their exascale challenge problems

Software Technologies
• ALPINE – data analytics and 

visualization tools

• ExaWorks – software 
development toolkits for 
complex workflows

Co-Design Centers
• CoDAR – compression and 

data analytics

• ExaLearn – machine learning

Applications
• Candle - ML for cancer 

research

• ExaBiome – Computational 
biology and metagenomics

• ExaFEL – Experimental 
Science Data

General solutions                           Specific Applications
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CANDLE combines the strength of exascale computing with NIH 
domain knowledge to address cancer and precision medicine
Science Goals:  

• Drug Response: Predict drug response for 1000 drugs and 500,000 drug combinations on 10,000 samples 
using supervised learning to capture nonlinear relationships between drug properties and tumor properties

• RAS Pathway: Predict multi-scale molecular dynamics simulation state transitions for 4000 simulations and 
10s of species of lipid combinations and 10s of molecular configurations using unsupervised learning

• Treatment Strategy: Predict cancer phenotypes and patient treatment 
trajectories using semi-supervised learning to read and 
encode millions of clinical reports

Methods:
• Exascale deep learning environment for cancer

• Use and develop open-source deep learning frameworks

• Provide open-source benchmark problems and datasets
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Recent results improve the confidence of using deep neural nets in 
these types of applications
• CANDLE framework consists of 

– DNN layer – utility library providing functions that streamline the process of writing CANDLE-compliant 
code; enables experiments to be designed that efficiently sweep across a range of network 
hyperparameters

– Supervisor layer - provides a set of modules to enable various hyperparameter optimization (HPO) 
schemes and to automatically distribute the workload across available computing resources. 

• Recent Results:
– The ability to identify and understand low-confidence predictions of DNNs were significantly increased by 

training several thousand models on the DOE leadership computers and applying statistical methods to the 
outputs.

– Combining molecular simulation and artificial intelligence on leadership-scale supercomputers—including 
the DOE supercomputers Summit and Theta, as well as the National Science Foundation Frontera 
supercomputer—is resulting in promising new insights into future COVID-19 therapeutics.

– The CANDLE collaborative research team is applying the latest deep learning techniques for information 
extraction from COVID-19 and cancer-related literature. Several hundred thousand scientific reports and 
clinical records can be quickly and accurately scanned for relationships that shed new light on the 
underlying basis of diseases and provide insights toward new therapeutics.
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ExaBiome develops scalable methods for metagenomic analysis
Science Goal:  Compute the genome sequencing on communities with 1000s of microbial 
species; useful in environment, plant, animal and human health, bio-manufacturing
• Demonstrate on 50 TB of environmental data
• Challenge with methods that are not robust, evolving, and not well suited for GPUs

Computational Motifs
• Hashtables
• Sorting
• Graph Traversal
• Generalized N-body
• Sparse matrices
• Sequence alignment

Application Problems
• Assemble genomes
• Compute distances using 

similarity networks
• Cluster computations
• Annotate and compare
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GPUs and distributed memory platforms allow for new 
approaches and science questions in metagenomics
• MetaHipMer Pipeline Advancements

– New parallel implementation of K-mer analysis 3-
5X faster using UPC++ instead of MPI; most time 
consuming stage

– New scaffolding stage avoids serial bottlenecks 
that existed in previous versions

– Using co-assembly of all samples together (rather 
than one sample at a time followed by a 
combination step) enabled previously 
unachievable results

• Careful implementation of alignment kernels on 
GPUs enabled speed ups of 6.6X on 1 GPU 
and 30.7X on 6 GPUs compared to CPU 
implementation
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The ExaFEL project will leverage exascale computing to reduce, 
from weeks to minutes, the time needed to analyze LCLS data

Science Goal

• Detector data rates at light sources are advancing exponentially

• LCLS will increase data throughput by O(103) by 2025. 

• Data analysis must be carried out quickly to allow users to 
iterate their experiments and extract the most value from scarce 
beam time. 

Data Challenge

• Ultrafast X-ray pulses from LCLS are used like flashes from a 
high-speed strobe light, producing stop-action movies of atoms 
and molecules

• Both data processing and scientific interpretation demand 
intensive computational analysis
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Computational Challenges:
• Complex multi-component workflow, 

integration of DOE HPC and experimental 
facilities

• Moving from SFX to single particle imagining 
algorithms (M-TIP).

• Non-uniform FFTs on GPUs

• Improving algorithms for SFX: X-ray tracing 
for pixel-level resolution

• Maximum likelihood estimation optimization 
loop

ExaFEL: Data Analytics for High Repetition Rate Free Electron 
Lasers

Computational Tasks:
• Serial Femtosecond Crystallography (SFX): 

using x-ray tracing in nanocrystallography
reconstruction (challenge problem)

• Single Particle Imaging (SPI): 
simultaneously determine conformational 
states, orientations, intensity, and phase from 
single particle diffraction images

• Real time end-to-end workflows: automate 
the coordination of resources to execute end-
to-end workflows from SLAC to NERSC



37

If successful, ExaFEL will enable real time analysis at LCLS and 
enhance the ability to answer fundamental questions about the 
nature of matter

• New GPU kernels for solving nanoBragg inverse problem and demonstrated on Summit using 
O(106) simulated diffraction patterns. Used to ameliorate the traditional X-ray diffraction indexing 
algorithms for Serial Femtosecond Crystallography (SFX). 

• New Cartesian/non-uniform FFT formulation of M-TIP algorithm allows SPI reconstruction to scale 
to many nodes; allows analysis of massive data sets expected from LCLS upgrade

• Developed the ability to stream science data from SLAC to computing facility; start analysis job on 
the supercomputer, and report the results back in quasi real time.   Integrated with LCLS data 
management system.
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In summary, the ECP is addressing data science challenges at the 
largest computing scales
• New capabilities

– Techniques for analyzing massive scientific data sets from 
simulations

– In situ methodologies
– Better I/O, compression algorithms
– Complex workflows
– Scalable machine learning/deep neural nets

• Move to GPU architectures is well underway

• Technologies are used in a wide variety of applications 
important to the DOE

• Size of ECP project drives opportunities for increased 
cross team collaborations and community solutions For more information visit 

https://www.exascaleproject.org/

https://www.exascaleproject.org/


Questions?
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