Conflict, Coordination, & Control:
Do we understand the actual rules used to
balance flooding, energy, and ag tradeoffs!
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Key Points

Model-based understanding of the complex evolution of
food-energy-water systems as well as their “risks” and “resilience’

)

@ Must be able to capture extremes and real failure modes.

@ Is heavily influenced by human preferences, tradeoffs in
conflicting demands, and high-fidelity representations of
candidate actions

@ Should create a platform for understanding
state-action-consequence feedbacks as a function of the
information available to the actual humans managing the
systems
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Red River Basin

: A@’ Second largest river
: basin in Vietham

Capital city of Hanoi
sits in delta,
threatened by floods

In 2002, UNDP
estimated annual
damages of 130M
USD in the delta,
50M USD in Hanoi?

'Hansson, K., and Ekenberg, L. (2002). Flood Mitigation Strategies for the Red River
Delta, in: International Conference on Environmental Engineering, An International
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e
PRl
MILANO 1863 1 November 4
2021

%,

(€
Q

%,
S




Red River Basin

To provide flood protection to Hanoi and the delta, the Vietnamese
government has started constructing reservoirs
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But how should they be coordinated to
meet multi-sector demands!?
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Multi-sector reservoir demands

Dams provide hydropower
Hydropower currently represents 46% of Vietnam’s total

installed electric power capacity

Reservoirs provide water supply
70% of Vietnamese population employed in agriculture,
76% of Vietnamese agriculture is irrigated

Demand by Sector

Cultivation - 58 %
Livestock - 1 %
Environment - 7 %
Rural - 2 %

Urban - 2 %
Industry - 1 %
Fishery - 29 %
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But will these demands change? How!?

Vietnam GDP by Sector
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Will the climate change! How?

Vietham Feels the Heat of a 100-Year Drought

By Martha Ann Overland / Hanoi

Every year, even at the peak of Vietnam's dry season,
when the Red River is at its lowest, Hanoi's skilled

Thursday, Mar. 04, 2010
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captains manage to negotiate their flat-bottomed Government Business Society Art & Enterfainment  Trav
boats through its shallow waters. But this year, with a
drought gripping the entire country and water levels VIETNAM-IN-PHOTOS

at record lows, the river is eerily quiet. What is
normally a bustling waterway is becoming a winding
river of sand, and farmers who depend upon the river
for irrigation are watching the expanding sandbars as
nervously as the boat captains. "If there is no water in
the coming days," says 59-year-old farmer Vu Thi La,
who just put in her spring rice seedlings, "it will all
die."

Nguyen Huy Kham / Reuters

The dried-up bed of the Red River, near Long Bien Bridge in Hanoi
onDec. 1, 2009
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&he New Hork Times

Drought and ‘Rice First’ Policy Imperil Vietnamese Farmers

By JANE PERLEZ MAY 28, 2016
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Last update 11:17 | 25/07/2017
Red River rising

The water level of the Red River has been rising sharply in |
discharge from the Hoa Binh Hydropower Plant reservoir.
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Red River System Goals

Find operations for four

How should we largest reservoirs that
translate and evaluate

these narrative goals in 1) Maximize

: Hydropower

our models? Production

; g 2)  Minimize Water
Supply Deficit

3) Minimize Flooding
at Hanoi

=0 St and are robust to deep
uncertainties
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Official Guidelines

Between
Seasons

Red River System

Da River
Lo River

Flood Season Dry Season

Thao River

Chay River
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release, utSL
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f/then/else statements
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release, utTB
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If/then/else statements
that depend on:

~HN
t/ rtHB; StHBIStTQ' Zt+1

Unregulated. Use
release from one of our
optimized policies.

1 November 10

2021



Red River System

Official Guidelines

Thao River

Da River
Lo River

Chay River q5

Thac Ba 3
X

O catchment
A reservoir

O power plant

(0} flooding point

Sea Tide
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Flood Season Dry Season Between
Seasons
Determine SL Determine TB
release, utSL release, utTB
* |f S TB <s TB, lower target EIse
t t
Determine HB / \

release, utHB s 5 m
u'"=0 u't=uy=mn
* t t t
Determine TQ
release, utTQ

V

Determine TB
release, utTB
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Red River System Official Guidelines

Flood Season Dry Season Between
Seasons

Determine SL Determine TB
q° release, utSL release, utTB
uyen Quang * *
B Determine HB | Determine TQ
release, utHB release, utTQ
* hc StTQ < StTQ, lower target Flse
() catchment Determine TQ / \
A [ESRIVON release, utTQ 7Q 7Q 7Q, min
* u'= 0 ut=u
. power p|ant Determine TB
@ flooding point release, utTB

Sea Tide
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Red River System

Official Guidelines

Hoa Binh a

Lo River

Sea Tide

O catchment
A reservoir

O power plant
(0} flooding point
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Red River System Official Guidelines

Flood Season Dry Season Between

Seasons

Lo River

Determine SL Determine TB

q° release, utSL release, utTB

Tuyen Quang * *

Determine HB  Determine TQ
Hoa Binh HB 7Q
A release, u, release, u,
- * *
() catchment Determine TQ | Determine
A | release, u @ Preliminary HB
reservoir * t release, UtHB
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@ flooding point release, utTB
Sea Tide
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Red River System

Official Guidelines

{ Thao River 5

Lo River

Sea Tide

%

O catchment
A reservoir

| power plant
@ flooding point
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Evolutionary Multi-Objective Direct Policy Search
(EMODPS)

Computationally efficient method for solving high-dimensional,
multi-objective control problems

initial population 0o system model Step 1:
| time-sefies | Parameterization
of inflows -
run a system system

simulation for
each individual pe

| objectives

1
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1
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Evolutionary Multi-Objective Direct Policy Search
(EMODPS)

Computationally efficient method for solving high-dimensional,
multi-objective control problems

time-series
of inflows

initial population 6o

run a system
simulation for
each individual pe

system model

system
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Evolutionary Multi-Objective Direct Policy Search
(EMODPS)

Computationally efficient method for solving high-dimensional,
multi-objective control problems

initial population 6o system model Step 3:
e | . . .
I time-series 1 l Optlmlzatlon
\ of inflows :
! run a system system ————
| simulation for | ralectoriesT | COMP |
: T objectives | !
: each individual pe :
1 A 1
new population of J1 g ﬁ
policy parametersx{ —[777 =
Y é)_),
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o
crossover selection Ob
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Red River System

EMODPS Policies

Lo River

qS

O catchment
A reservoir

O power plant

(0} flooding point

Sea Tide
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Red River System

EMODPS Policies

Lo River

qS

O catchment
A reservoir

O power plant

(0} flooding point

Sea Tide
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Red River System

EMODPS Policies

Lo River

qS

O catchment
A reservoir

| power plant

(&} flooding point

Sea Tide
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Al Problem Domains
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Many-Objective Tradeoffs

Three-objective Test Problem

MOEA Search (Red) —

Notice how it not only finds

the solution, but also

Target Solution Set (Gray)distributes itself across the
solution.

Visual analytics:

Understand search

Avoid errors or wasted
effort due to arbitrary

termination choices

Provide meaningfully
comparisons of
formulations/algorithms

Allow stakeholders to see
the full context of what was
gained




Borg MOEA Parallelization

Global
e-Dominance
Archive

T

Controller

........ Node
3) Guidance

Local
e-Dominance
Archive

Local

e-Dominance V _k
Archive q—
(-]
Local I g
e-Dominance
Archive

Hadka, D., and Reed, P.M., “Large-scale Parallelization of the Borg MOEA for Many-Objective
Optimization of Complex Environmental Systems”, Environmental Modelling & Software, v69,
353-369, 2015.
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Monte Carlo Simulation of Scalability of Search

Theoretical Scaling from Discrete Event Simulation (accurate to within

0.1%)108 100
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Computing", Water Resources Research, v50, n10, 8367-8373, 2014.
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Official Control Rules vs. EMODPS Polices

S0, how do these approaches
compare!
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Objective Comparison

Guidelines are fully * <«
dominated, and 16 8 JPeficit? (m3[s)2
domination should 44 @ e 1494
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Let’s pick a few to highlight

W < v
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Let’s look in more detail... 100,000 simulated years

EMODPS Compromise_Policy

15

Probability Density

30 10

---- Second Alarm —— Dike Height

Guidelines do not effectively coordinate operations to make use of
reservoir storage for flood protection
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Guidelines are not coordinating operations well

This is troubling given we have only looked at stationary
hydrologic uncertainty.

What if we experience major
changes in human demands or
monsoonal extremes?
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Generating alternative states of the world

Goal: Sample broad range of hydrologic and socio-economic
factors to discover, a posteriori, the most important drivers of
system dynamics and performance

SOW 1:

SOW 1000:
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Annual mean flow and inter-annual variability

m,, =0.95/m, =1.05 =), 5 My =1.3

10°

Da River Flow (m?/s)

0
1000 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Probability of Exceedance

—— Base Case —— Decreased Mean/Std —— |Increased Mean/Std
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Demand changes

1800 Base Case Demand

MJ JASONDUJFMA
Month

w Agriculture Bl Aquaculture

B Other
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Factors influencing flood failures

EMODPS Best Flood Soln Guidelines Best Flood Soln
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0.8 TS £ 0.8
» O
0.6 T 06 Failures .
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my, my,

Guidelines have more failures
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Factors influencing flood failures

EMODPS Best Flood Soln Guidelines Best Flood Soln

JFIood <2.15m

) o: @ (]
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Sy 0 RS AP f_{' A T / Probability of
= o "Gt Success = 95%
0.8 4 ) o
0.6 . ‘ / Probability of
- Failures
Success < 95%
0.96 0.98 1.00 1.02 1.04 0.96 0.98 1.00 1.02 1.04
my, my,

Guidelines have more failures
Failures explained by 2 major factors:
Mean flow, u
Inter-annual variability, o
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Factors influencing hydropower failures

EMODPS Best Flood Soln Guidelines Best Flood Soln
J. . >25Gwh/day

Hydro
Successes / Probability of
Success = 50%
Failures ./ Probability of
Success < 50%
0.96 0.98 1.00 1.02 1.04 5,06 058 1.067.09 1.0
my, m,

Same controlling factors, but failure
regions are opposite
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Factors influencing deficit failures

EMODPS Best Flood Soln Guidelines Best Flood Soln

475 JMax =350 m?3/s
S o Probability of
g 275 Successes / Success > 75%
1.75 wie
raiures (@) /[ Sonebi ol
06 08 10 12 14 06 08 10 12 14
Mag n7ag
Controlled predominantly by
socio-economic factors:
Agricultural demand, ag
Other demand, o
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Defining a safe operating space (SOS)

1976-2005
15 EMODPS Best Flood Policy s Guidelines Best Flood Policy
RCP 2.6
1.4 RCP 4.5 1.4
EEE RCP 6.0
13 mmm RCP85 15
1.2
®)
g 1.1
1.0
0.9
0.8
0.7 0.96 0.98 1.00 1.02 1.04 07" 0.96 0.98 1.00 1.02 1.04
my my,

SOS does not encompass base SOW

Cannot provide protection to 100-yr flood
¢l with 95% reliability
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Frequently Ignored Issues in Climate Assessments

Simple discrete if/then/else-based human systems abstractions
lack fidelity and likely to inadvertently ignore major failures
modes

@ Deterministic model “fits” to historical observations do not
reflect rare events or the extrapolation of how they are
changing. This is not a regression problem...it’s an extrapolation

@ problem

Poor abstractions of sequential decision-making, coordination
failures, sectoral conflicts, and poor use of information will cause
@ severe errors in projecting candidate future pathways

Human institutions, land rights/competition, economic and
\ /i tesbpkagyitiensitions, infrastructure investments, etc. all can
SRNLS e ;
J R A MUEE landscape effects with small changesyoverber 40

2021



Thanks! Any questions!?
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Sensitivity of utHB with Different Policies
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