Modeling Sea-Level Rise (SLR) and Its Uncertainties under Climate Change

Minghua Zhang

School of Marine and Atmospheric Sciences (SoMAS) & Institute for Advanced Computational Science (IACS) Stony Brook University

Risks of Flooding: Relative Water Level

MSL + Normal High Tide + Storm Surge + Breaking Waves

SLR in the last century

(IPCC AR5, 2013)

Causes of Sea Level Rise

- 1. "steric (thermosteric)": global averaged changes in sea level due to thermal expansion and salinity change
- 2. "eustatic": change of water mass (glaciers, ice sheets, soil moisture) (Spatial scale very different!)
- 3. "dynamic": redistribution by currents, spatial inhomogeneity of temperature and salinity, changes in surface air pressure
- 4. "isostatic": changes in the level of the land from tectonic process (Post Glacial Rebound) (temporal scale very different!)

SLR in Recent Records

Driver of thermostatic SLR Uncertainty

a) Global surface temperature change relative to 1850-1900

(Arias et al. 2021)

Driver of Ocean Mass Uncertainty

Wolverine Glacier, Alaska. Photo by Rod March.

Glacier Ice Cap Ice Sheet

Results from Different Models

Main Sources of Differences:

Magnitude of Warming

Ice Sheet Models

Driver of Uncertainty in Post Glacial Rebound

$$S(\theta, \lambda, t) = C(\theta, \lambda, t) \left[\int_{-\infty}^{t} dt' \iint_{\Omega} d\Omega' L(\theta', \lambda', t') G^{L}(\gamma, t - t') + \frac{\Delta \Phi(t)}{g} \right]$$

(Peltier, 2004)

Global SLR and Uncertainties

SLR Projections

(IPCC AR6, 2021)

(Adhikary, 2021)

(IPCC AR5, 2013)

RCP 4.5 2080-2100 Projection

Average

10th Percentile

90th Percentile

(IPCC AR5, 2013)

What Matters? Vulnerable Infrastructure & Community

Bay Park Sewage Treatment Plant

Failed

Treatment Plant

Cesspool

SLR at Battery Park and Montauk

Upper 90th percentile estimate of sea-level rise in 2090s under two climate change scenarios

(Zhang et al. 2014)

RCP 4.5

RCP 8.5

Projected Warming

(Zhang et al. 2014)

Example: Flooding Risk at the Bay Park Sewage Rebuild Treatment Plant in Nassau County to Account for SLR

Decision with Uncertainty

Without action: $Cost_1 \sim \int P(risk) * P(Cost/Risk_1) dRisk_1$

With action:

 $Cost_2 \sim \int P(risk) * P(Cost/Risk_2) dRisk_2$

Cost of action: Cost₃

Cost_i = Cost_i (health, economical, social, ecological, ...

Decision: maximize $R = (Cost_1 - Cost_2)/Cost_3$ or $C = (Cost_1 - Cost_2) - Cost_3$

Climate Risk Report for Suffolk and Nassau

Prepared for the NYS Office of Storm Recovery by NYS Resilience Institute for Storms and Emergencies (RISE)

Build a 17ft Wall!

April 2014

(Zhang et al. 2014) 25

Summary

- Modeling SLR involves a vast range of temporal and spatial scales. Two of the four drivers are currently calculated separately.
- Sources of uncertainties can be identified but need to be quantified.
- SLR around the NY coasts is projected to be in the range of 0.4 m to 0.7 m at the end of the 21st century. The 90th upper bound under the worst emission scenario is 1.25 m.
- Decisions of adaptation and mitigation can take into account uncertainties (the probability of risks) and the associated costs as well as the costs of mitigation.