Modeling Sea-Level Rise (SLR) and Its
Uncertainties under Climate Change

Minghua Zhang

School of Marine and Atmospheric Sciences (SOMAS) &
Institute for Advanced Computational Science (IACS)
Stony Brook University



Risks of Flooding: Relative Water Level

MSL + Normal High Tide + Storm Surge + Breaking Waves
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SLR in the last century
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Change in global average upper ocean heat content
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Coupled Ocean-Atmosphere-Land Models
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Causes of Sea Level Rise

. "steric (thermosteric)”: global averaged changes in
sea level due to thermal expansion and salinity change

. “eustatic”: change of water mass (glaciers, ice sheets,
soil moisture) (Spatial scale very different!)

. “dynamic”: redistribution by currents, spatial
inhomogeneity of temperature and salinity, changes in
surface air pressure

. "isostatic“: changes in the level of the land from
tectonic process (Post Glacial Rebound) (temporal
scale very different!)
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Driver of thermostatic SLR Uncertainty

a) Global surface temperature change relative to 1850-1900

SSP5-8.5
SSP3-7.0

SSP1-2.6
Sar1-1.Y

2000 2015 2050

(Arias et al. 2021)
10




Driver of Ocean Mass Uncertainty
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e e Results from

Different Models

Main Sources
of Differences:

Magnitude of
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Driver of Uncertainty in Post Glacial Rebound

b. During deglaciation ——
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Global SILLR and Uncertainties

Sum 2081-2100 relative to 1986-2005
Thermal expansion

Glaciers

Greenland ice sheet (including dynamics)

Antarctic ice sheet (including dynamics)

Land water storage

Greenland ice-sheet rapid dynamics
| Antarctic ice-sheet rapid dynamics
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SLR Projections

Global mean sea level rise

Mean over
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(d) Sea level change
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RCP 4.5
2080-2100 Projection
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What Matters?
Vulnerable Infrastructure & Community
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Treatment Plant

Failed
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SLR at Battery Park and Montauk

Sea Level Height
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RCP 4.5

Warming in Nassau and Suffolk Under Aggressive

P roj ected Emission Mitigation Scenario (RCP 4.5)
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Example: Flooding Risk at the Bay Park Sewage
Rebuild Treatment Plant in Nassau County to Account for SLR
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Decision with Uncertainty

Without action:
Cost; ~ [ P(risk) * P(Cost/Risk,) dRisk,

With action:
Cost, ~ [ P(risk) * P(Cost/Risk,) dRisk,

Cost of action: Cost,
Cost; = Cost; (health, economical, social, ecological, ..

Decision: maximize R= (Cost,- Cost,)/ Cost;
or C = (Cost4- Cost,) - Cost,
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Climate Risk Report for
Suffolk and Nassau

Prepared for the NYS Office of Storm
Recovery by NYS Resilience Institute for
Storms and Emergencies (RISE)

April 2014

Build a 17ft Wall!

(Zhang et al. 201421)5



Summary

Modeling SLR involves a vast range of temporal and spatial
scales. Two of the four drivers are currently calculated
separately.

Sources of uncertainties can be identified but need to be
quantified.

SLR around the NY coasts is projected to be in the range of 0.4
m to 0.7 m at the end of the 21st century. The 90" upper bound
under the worst emission scenario is 1.25 m.

Decisions of adaptation and mitigation can take into account
uncertainties (the probability of risks) and the associated costs
as well as the costs of mitigation.
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