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Data Assimilation (DA)

Data assimilation (DA) seeks to optimally combine a numerical model with
observations to improve results, where

I the model is typically chaotic and has uncertainties, while

I the observations contain noise and are often available only for a subset of the
state variables.

(Kalnay 2003; Majda & Harlim 2012; Law, Stuart & Zygalakis, 2015 ...)

DA has wide applications in many areas, such as engineering, climate science,
geophysics, neural science and material science.

When the underlying system is chaotic or turbulent, DA plays an extremely important
role in state estimation and improving the initialization for forecast.

Example:
The Lorenz 63 model

dx = σ(y − x)dt,

dy =
(
x(ρ− z)− y

)
dt,

dz = (xy − βz)dt.
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I Underlying principle of DA: the Bayes’ theorem

p(um+1|vm+1)︸ ︷︷ ︸
posterior

∼ p(um+1)︸ ︷︷ ︸
prior

p(vm+1|um+1)︸ ︷︷ ︸
likelihood

.

tm+1tm tm tm+1

um+1|m(prior)

um+1|m

(observation)
vm+1

um|m

(posterior)
(prior)

true signal true signal

um+1|m+1

(posterior)

vm+1

(observation)

2. Analysis (Filtering)1. Prediction (Forecast)
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Data Assimilation and Uncertainty
Quantification
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Recovering Geophysical Flows with Lagrangian Data Assimilation
I Lagrangian tracers: drifters/floaters following a parcel of fluid’s movement.
I [Inverse Problems]. Data assimilation with Lagrangian tracers: recovering the

underlying velocity field with observations (from tracers).

I Only dynamics: large uncertainty due to turbulence.

I Dynamics + Observations: reducing error and uncertainty.

(From: UCSD ARGO program)

Lagrangian data assimilation is a hot topic recently with a wide range of applications.

An important question:
What is the uncertainty reduction as a function of the number of tracers?
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Model set-up for studying the uncertainty reduction v.s. the number of tracers.

1. Underlying flow model.

Consider a random flow modeled by a finite number of Fourier modes with
random amplitudes in double periodic domain (0, 2π]2,

~v(~x , t) =
∑
~k∈K

v̂~k (t) · ei~k·~x ·~r~k .

Each v̂~k (t) follows an Ornstein-Uhlenbeck (O.U.) process,

dv̂~k (t) = −d~k v̂~k (t)dt + f~k (t)dt + σ~k dW v
~k

(t).

2. Observations.
The observations are given by the trajectories of L noisy Lagrangian tracers,

d~xl (t) = ~v(~xl (t), t)dt + σx dW x
l (t)

=
∑
~k∈K

v̂~k (t) · ei~k·~xl (t) ·~r~k︸ ︷︷ ︸
Nonlinear!

dt + σx dW x
l (t), l = 1, . . . , L.

3. Combining model and observations: A nonlinear DA framework — p(U|X).

Observations: dX = PX (X)Udt + Σx dWX , X = (x1,x , x1,y , ..., xL,x , xL,y )T ,

Underlying flow: dU = −ΓUdt + F(t)dt + ΣudWu , U = (v̂1, ...v̂K)T .

Closed analytic formulae are available for such a nonlinear DA (Chen & Majda 2018).
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1. Recovering random incompressible flows
First rigorous math theory

(Chen, Majda & Tong, Nonlinearity, 2014)

Prior distribution based only on the model p(Ut ) ∼ N (matt
t ,Ratt

t )

Posterior distribution combining model and obs p(Ut |Xs≤t ) ∼ N (mt ,Rt )

Theorem (Invariant measure of tracers)

The distribution of the noisy tracers ~xl (s) converges geometrically fast towards the
uniform distribution on (0, 2π]2.
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Theorem (Asymptotic behavior of the posterior statistics)

The posterior mean converges to the truth while the posterior covariance decreases as
a function of L−1/2.
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To quantify the uncertainty reduction in the posterior distribution
p(Ut |Xs≤t ) related to the prior p(Ut ), an information criterion — the
relative entropy — is adopted:

P(p(Ut |Xs≤t ), p(Ut )) =

∫
p(Ut |Xs≤t ) ln

p(Ut |Xs≤t )

p(Ut )

For Gaussian distributions,

P(p(Ut |Xs≤t ), p(Ut ))

=
1
2

[
(mt −matt

t )∗(Ratt
t )−1(mt −matt

t )
]

· · ·Signal

+
1
2

[
tr(Rt (Ratt

t )−1)− |K| − ln det(Rt (Ratt
t )−1)

]
· · ·Dispersion

Theorem (Uncertainty Reduction)

As L→∞, there exists a fixed time s0 > 0 such that for a.s. ~vs≤t

For any t > s0, Signal→
1
2

(Ut −matt
t )∗R−1

att (Ut −matt
t ) in P~vs≤t

,

For any t > 0,
Dispersion
|K|+2

4 ln L
→ 1 in P~vs≤t

.

Reducing the uncertainty by a fixed amount requires an exponential
increase in the number of tracers — A practical information barrier!
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2. Noisy Lagrangian tracers
for recovering random rotating compressible flows

(Chen, Majda & Tong, JNLS 2015; Chen & Majda, MWR, 2016)

I Underlying flow field is multiscale, containing the slow geostrophically balanced
(GB) modes and fast gravity modes.

I Highly nonlinear observations mixing (GB) and gravity modes!

I Designed several cheap reduced DA strategies, which have comparable high
skill in recovering GB modes as using the full system, in the geophysical
scenario with small Rossby number.
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3. Lagrangian data assimilation using the observed sea ice floes.

Satellite images: the marginal ice zone, June 2008. Model simulations.

I Developed a coupled ocean, atmosphere and discrete element sea ice model.
I Developed a cheap DA to recover the ocean current beneath the sea ice floes.
I Developed a DA-based dynamical interpolation to recover the missing obs of the

sea ice floes in the presence of clouds, applying to the satellite images.
(Chen, Fu & Manucharyan, 2021; Covington, Chen, Wilhelmus, & Lopez, 2021)
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Data Assimilation and Solving
High-Dimensional Fokker-Planck Equations
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Consider a general nonlinear dynamical system with noise,

du = F(u, t)dt + Σ(u, t)dW.

The Fokker-Planck equation describes the time evolution of the probability density
function (PDF) associated with u,

∂

∂t
p(u, t) = −∇u

(
F(u, t)p(u, t)

)
+

1
2
∇u · ∇u(ΣΣT (u, t)p(u, t)).

Important applications:

I ensemble forecast

I linear response theory

I studying extreme events

Direct PDE solvers won’t work efficiently for dim > 3. Monte Carlo simulations can
handle slightly larger dimensional systems but still suffer from the Curse of
Dimensionality.
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Split the original systems into the following equivalent form:

duI = FI(t ,uI,uII)dt + ΣI(t ,uI,uII)dWI(t),

duII = FII(t ,uI,uII)dt + ΣII(t ,uI,uII)dWII(t),

Motivation: If we have an efficient DA scheme and L trajectories of uI, namely ui
I with

i = 1, . . . , L, we can represent p(uII(t)) by a summation of L conditional distributions,

p(uII(t)) = lim
L→∞

1
L

L∑
i=1

p
(

uII(t)|ui
I(s ≤ t)

)
.

Advantage: The method overcomes the curse of dimensionality! In other words, L
does not increase as the dimension of uII increases.

MC New method
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The following nonlinear modeling framework includes a rich class of models

duI = [A0(t ,uI) + A1(t ,uI)uII]dt + ΣI(t ,uI)dWI(t),

duII = [a0(t ,uI) + a1(t ,uI)uII]dt + ΣII(t ,uI)dWII(t).

Examples:

I physics-constrained nonlinear stochastic models
(e.g., the noisy versions of Lorenz models, low-order models of Charney-DeVore flows, and a paradigm

model for topographic mean flow interaction)

I stochastically coupled reaction-diffusion models in neuroscience and ecology
(e.g., stochastically coupled FitzHugh-Nagumo models and stochastically coupled SIR epidemic models)

I multi-scale models in turbulence, fluids and geophysical flows
(e.g., the Boussinesq equations with noise and stochastically forced rotating shallow water equation)

Many other models can be easily approximated by the above system.

Key feature: Closed analytic formula is available for the nonlinear DA estimator
p
(
uII(t)|ui

I(s ≤ t)
)
, which is a conditional Gaussian distribution.

Assume the dimension of uI is low such that p(uI(t)) can be approximated by a kernel
density estimation. Then the time-dependent joint PDF is given by a Gaussian mixture,

p(uI(t),uII(t)) = lim
L→∞

1
L

L∑
i=1

(
KH(uI(t)− ui

I(t)) · p(uII(t)|ui
I(s ≤ t))

)
.
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Theorem: Error estimation (Chen, Majda & Tong SIAM UQ 2018).

Consider the following two ways of estimating the density pt with the same L:

p̃t : Kernel density estimation for the joint PDF.

p̂t : Hybrid method — Kernel density + conditional Gaussian estimation.

Results of the error estimates in light of the bias-variance decomposition:

p̃t Bias bound ≥ p̂t Bias bound,

p̃t Variance bound
p̂t Variance bound

=
H−

NII
2 C

E
√

det(RII(t))
−1 .

Here E
√

det(RII(t)) does not decrease as L but the bandwidth H does!!

When H shrinks and NII becomes large, H−
NII
2 increases dramatically.

Equivalently, we have the following MISE estimations:

p̃t : MISE ∼ O
(

L
− 4

4+NI+NII

)
and p̂t : MISE ∼ O

(
L
− 4

4+NI

)
The error in the hybrid method does not depend on NII.
— Beating the curse of dimensionality in uII!
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Example: A nonlinear system with 1000 dimension: A Stochastic Coupled FHN
Model (Chen & Majda 2017 PNAS).

εdui =
(

du(ui+1 + ui−1 − 2ui ) + ui −
1
3

u3
i − vi

)
dt +

√
εδ1dWui ,

dvi =
(
ui + a

)
dt + δ2dWvi , i = 1, . . . ,N.

with N = 500. The total number of dimension is 1000.

I Block decomposition allows an extremely efficient parallel computation of the
covariance evolution.

I Statistical symmetry is incorporated and greatly reduces the number of sample L.

I An accurate recovery of both the transient and equilibrium non-Gaussian PDFs
(one-point and two-point statistics) requires only L = 1 samples!

I As comparison, the truth is generated using Monte Carlo with LMC = 150, 000.
16 / 26



An accurate recovery of one-point and two-point statistics using only L = 1 samples!
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Data Assimilation and Machine Learning
Forecast
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Model-Based Ensemble Forecast v.s. Machine Learning (ML)
Forecast

Ensemble forecast based on physics-informed parametric models is one of the most
widely used forecast algorithms for complex turbulent systems.

I Major difficulty: model error, ubiquitous in practice.

Nowadays, machine learning (ML) has become a powerful forecast tool.

I Pros: By extracting the information directly from the available observational
data, the ML models can avoid the model error in the physics-informed models.

I Cons: only partial, noisy, and possibly short observations are available in
many applications.

Can physics-informed models be combined with ML to improve the forecast?

Yes! How? Via DA! DA can:

I mitigate the error in the time series generated from the parametric model,

I create the time series of the unobserved state variables, and

I generate multiple time series (via a Bayesian sampling) to provide enough
training data for the ML forecast.
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I Pros: By extracting the information directly from the available observational
data, the ML models can avoid the model error in the physics-informed models.

I Cons: only partial, noisy, and possibly short observations are available in
many applications.

Can physics-informed models be combined with ML to improve the forecast?

Yes! How? Via DA! DA can:

I mitigate the error in the time series generated from the parametric model,
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Assume we are only given an imperfect/approximate model and partial and noisy
observational time series.

Bayesian Machine Learning Advanced Forecast Ensemble (BAMCAFE):

1. Generating the ML training data using a Bayesian sampling approach (i.e., a
Bayesian ensemble DA).

2. Training a ML model (e.g., a neural network) utilizing the data from Step 1.

3. Employing a generalized DA for the initialization of the ML model.

4. Applying a ML ensemble forecast.

(See Chen & Li, Chaos 2021)

In addition to forecasting the optimal point-wise value, the BAMCAFE also aims at
providing an accurate quantification of the forecast uncertainty utilizing a non-Gaussian
PDF constructed by a mixture distribution.
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Numerical example.
Perfect model: The two-layer Lorenz 96 (L96) model — a conceptual representation of
geophysical turbulence:

dui

dt
=

−ui−1 (ui−2 − ui+1)− ui + f −
hc
J

J∑
j=1

vi,j

+ σui Ẇui , i = 1, . . . , I,

dvi,j

dt
=

(
−bcvi,j+1

(
vi,j+2 − vi,j−1

)
− cvi,j +

hc
J

ui

)
+ σvi,j Ẇvi,j , j = 1, . . . , J,

with I = 40 and J = 4. A weak scale separation is adopted to better mimics the real
atmosphere with chaotic/turbulent behavior.
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(from Wilks 2005)
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Two approximate models.
I One-layer L96 (L96-1LYR) model,

dui

dt
= (−ui−1 (ui−2 − ui+1)− ui + f ) + σui Ẇui , i = 1. . . . , I.

I Stochastic parameterized imperfect model (L96-SP),

dui

dt
=

−ui−1 (ui−2 − ui+1)− ui + f −
hc
J

J∑
j=1

vi,j

+ σui Ẇui , i = 1, . . . , I,

dvi,j

dt
= −d̂i,j (vi,j − v̂i,j ) + σ̂vi,j Ẇvi,j , j = 1, . . . , J.
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Setup of the experiments:
The observations are adopted only for the large-scale variables and are only on the
even grid points: u2, u4, . . . , u40.

Long short-term memory (LSTM) NN models are trained based on each approximate
model and are applied for forecast all the large-scale variables.
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Application: Predicting a Widely Used El Niño-Southern Oscillation (ENSO) Index
(Chen, Harlim & Gilani, GRL, 2021)

ENSO is a large-scale interannual climate variability.
It strongly connects with global warming and climate
change.

The observations are short. The averaged sea surface
temperature (SST) anomaly in the eastern Pacific (i.e., the
Nino 3 index):
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Year

-2

0

2

4

o
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A suitable model describing the Nino 3 index:

dTE = (−dT TE + ωHW + αT τ) dt + σT dWT ,

dHW = (−dHHW − ωTE + αHτ) dt + σH dWH ,

dτ = (−dτ τ) dt + στ (TE ) dWτ .
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Ongoing ... ML prediction of the ENSO complexity using a recently developed
stochastic model as the prior.
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Conclusion

I DA is important for uncertainty quantification in complex nonlinear systems.

I DA provides a new way to efficiently solve high-dimensional Fokker-Planck
equations.

I DA connects parametric models with ML tools to improve the forecast.

Thank you!
(chennan@math.wisc.edu)
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