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Outline/summary

* What is risk?
* Hazard x exposure

* How to estimate tropical cyclone risk?
* Past observations are inadequate
* “Models” to make more data

* What are “cat” models?
* Risk models used by industry (esp. insurance)

* CHAZ: the Columbia tropical cyclone hazard model
* Physics-informed, data-driven
* Tropical cyclone genesis
* Example: Climate change delta
* Example: Wellbeing
* XGboost wind model



Top 10 Costliest Hurricanes In The United States

($ millions)
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Who cares about risk?

* People who own things
* People who insure those things

* Insurance companies often have both sources of risk
* Liabilities (policies)
* Assets (with which to pay claims)

* Reinsurance industry

* Insurance for insurance companies against catastrophic events
* Hurricane Andrew (1992): at least 11 insurance companies insolvent

* Governments/public sector
* Non-governmental organizations

(Things include financial instruments: cat bonds, ILS, etc.)



What are some types of risk?

* Natural
* Earthquake
* Hurricane [
* Tsunami
 Severe convective storms (tornado & hail)
* Wildfire
* Flood

* Human
* Cyber
* Terrorism
* Pandemic

that can be insured?



Risk = hazard (x vulnerability) x exposure

* Risk = loss
e Economic or well-being (hard to measure)
* Insured loss (easier to measure, hard to access, incomplete)

* Hazard (or peril) e.g., hurricane [
* Cause of loss or damage
e Extent and intensity

* Vulnerability
* Damage = f(hazard) e.g., type of construction, building code

* EXposure
* Being in harm’s way (house near the coast)

Not exactly economic risk? = uncertainty, has upside and downside



s historical data enough to estimate risk?

* Typically 10 to years of claims data available
* Not enough to estimate 1-in-200-year loss

* Changes in exposure

* New building, urbanization & oo,
i Ch danges in vu I Nnera bl I |ty Today (Oct 25) marks the 100th anniversary since the
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° Annual average number Of TCs would result in MANY billions in damage.
* Global ~90
* Atlantic ~11

*from rare, high-impact, catastrophic events



Example: What was the probability of hurricane with a Sandy-like angle?

Before Sandy? Zero?

A small number but
not zero.

~1-in-700 years event

If only there were
more data!
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Hall and Sobel, 2013, Geophys. Res. Lett.



More data is needed (100’s of years)
Solution: Make your own

* Scientists use physics-based (PDEs) climate models

* Pros: Physics! Include climate change & variability (ENSO). Similar to weather
models. Global

 Cons: Limited ability to represent TCs/computational cost. Systematic errors.
No representation of the human impact

* Industry (insurance/reinsurance) uses cat(astrophe) models

* Pros: Match historical events and losses. Complete: Hazard [ Loss

* Cons: Often black boxes. Mostly statistical (stationary, no climate change).
Missing in parts of the world without insurance



Catastrophe models were designed to estimate risk for the
(re)insurance industry
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The problem cat models solved was the shortness of the historical
record --- not its unrepresentativeness due to climate change
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Typically based on historical data, not physics-based simulation



Industry cat models are mostly a) proprietary, and b) country-
specific, and weak to nonexistent for countries with little insurance
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Industry cat models are mostly a) proprietary, and b) country-
specific, and weak to nonexistent for countries with little insurance

Hazard Vulnerability Interpretation
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Good public vulnerability & exposure data is hard to come by



Columbia World Projects

LUMBIA UNIVERSITY

Academic catastrophe modeling

* Open source — debated in the
peer-reviewed literature

* Physics informed — in order to handle
climate change

e Data driven — computationally efficient

* Can address problems globally, even
where the insurance industry may not
have a large interest

* Our group been building a model for
tropical cyclone risk (CHAZ). The hazard
component is fully functional since a
couple years ago, simple representations

O];(er[(DjOSUI'e and vulnerabi/ity are being Disaster Preparedness, Resilience and Response
aaded.

Hurricane Risk Models for Vulnerable Populations

. . |
Originally inspired by the work of K. Emanuel (2006, 2008...)! Active Project




The Columbia TC hazard model: CHAZ

——=—=—==—========1 (CHAZis a statistical-dynamical downscaling model
| Statistical-Dynamical Downscaling . . .

which uses large-scale conditions representing the
atmospheric dynamic and thermodynamic environment
from a global model to predict the genesis, tracks and
intensities of synthetic TCs. (Lee et al. 2018, JAMES)
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The Columbia TC hazard model: CHAZ
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The Columbia TC hazard model: CHAZ

Three elements of the CHAZ model:

* Genesis: Decide where and when to
seed TC precursors according to the
favorability of large-scale
conditions;

| Statistical-Dynamical Downscaling

* Track: Move the seeds according to
the large-scale steering flow;

missiens-Scenarios

Vit i - * Intensity: Calculate storm intensity
| o= _CRa TR secs | evolution using the local large-scale
environmental conditions (PI, shear,
water vapor content, etc.).

_—_il-l__________

X WA
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Three elements of the CHAZ model

Genesis - Tropical cyclone genesis index (rca, Tippett et al. 2011, camargo et al
___2014)

UTC surice Cloudy brighhess kmperal
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Megy = €XP(b + bnr]850+ b CRH+b, Pl+b_ SHR)
= exp(b + bnr]850+ b SD+b, Pl+ bSHRSHR)

T
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N i . iR %0 ' 850+ (1- (J()V250 +Vp, 0= 0.8, ) Vg is a function of latitude
e T e 7
ORISR = Intensity - Auto-regressive multiple linear regression model
ECMWEF

Vegrpart — Ve = MLR(Xt, Xt+Atl Vg, vt—At)+et (Lee et al. 2015, 2016)

Predictors: MONTHLY wind (vorticity, shear, steering flow); temperature & moisture (PI
humidity or/and saturation deficit)

Lee et al. 2018, JAMES



Genesis

e lllustrates the data-driven, physics-informed approach

* A case where the physics don’t provide a clear answer
* No first-principles theory for TC genesis

* Predictors that work equivalently in the current climate (in sample),
diverge in the future

* Physics-based models also show uncertainty



Genesis

* Purely data-driven approach: Fit the rate at
each location and time of the year

* Many parameters
* Only works in the current climate
e Cannot tell us about variability (ENSO, etc.)

* Our approach: Use physical understanding
of the factors that are favorable for genesis
(SST, moisture, wind shear, vorticity)

* Fit rate to environmental factors

Implicit dependence on location, time of year,
climate via environment

Can be applied to climate projections, past
climates

Diagnose variability (ENSO, etc.)
Few parameters (5!)

Tippett, M. K., Camargo, S. J., & Sobel, A. H. (2011). A Poisson Regression
Index for Tropical Cyclone Genesis and the Role of Large-Scale Vorticity in
Genesis, Journal of Climate, 24(9), 2335-2357.



Warming climate projection: In the future climate, the
projected TC frequency either increases or decreases,
depending on the choice of moisture variable
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TCGI predictors
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% Change in Global TC Frequency
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For different reasons, state-of-the-art GCM genesis
projections show either an increase or decrease, which follow
the projected changes in these models’ storm precursors
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. . . X
Application to commercial
loss model

“Climate change deltas”



annual freq.

In practice, we convert the climate-change-related
increase/decrease in regional TC frequency at each intensity
category, apply such differences to a commercial vendor
m‘odel. and convert to losses

1.0 - Ori. TC freq. mess Ori. TC exceed. freq.
f \ CHAZ-derived CC delta
future TC frequency future TC exceed. freq.
0.8
0.6 NH Loss
model
x1.13 annual 100 RP

044 > Regional annual TC loss changes (%)
0.2~

x 1.45
0.0 : >

TS €l C2 (@5 C4 C5



Modeled Loss Adjustments with increasing freq.
projections
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From hazard assessment to
wellbeing



Quantify wind-related tropical cyclone risks for the wellbeing loss in
the Philippines.

Example work flow: exposed value
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Courtesy of Dr. J. Baldwin, UC Irvine (Baldwin et al., in prep)



Motivating problem: how should the Philippines
distribute funds to increase resilience to TCs?
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Perils to couple to CHAZ events

Primary
* Wind field near landfall [
Secondary

* Coastal flooding
* Surge driven by wind (GeoClaw, http://www.clawpack.org/geoclaw K. Mandli)

*Inland flooding
* Rainfall

 Tornado
e Landslides


http://www.clawpack.org/geoclaw%20K.
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Wind field near landfall

XGBoost-based hurricane wind reconstruction
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H,(m,n) = Nmn ]m(lm,nr) - cos(mo)

Residual field decomposition: Symmetry H,(mn) = N -] (A 1) - sin(mé)

residual field = }> 1a9n " Ha(0,n) + X0 1 Yo 1(@mn - Ha(m, n) + by, - Hy(m, n))

l )\ J
| |

Symmetrical residuals Wind field asymmetries

Ha(O, 1) H_(O, 2) Ha(O, 3)

Symmetrical residual eigenfunctions



H,(m,n) = Nmn ]m(}\m,nr) - cos(m0)

Residual field decomposition: Asymmetry Hy(mn) = No o Jo O 1) - sin(m6)

residual field = X1°;agn - Ha(0,n) + X1 X1 1(@mn - Ha(m,n) + by, - Hy(m,n))

l )\ J
| |

Symmetrical residuals Wind field asymmetries

H_(1,1) H_(1,2) H (1, 1) H,(1,2)

H (2, 1) H (2,2 H (2, 1) H (2,2)

Wind field asymmetry eigenfunctions



Wind reconstruction procedure

approximated wind = reference field + residual field approximation

= reference field + Y i agn - Ha(0,n) + X2 _ 3% (amn - Ha(m,n) + by, - Hy(m,n))

reconstructed wind = reference field + Yr_, aon - Ha(O,n) + 3 4 Z4=1(ﬁm,n -H,(m,n) + Bm,n - Hp(m, n))

e e T

For each chosen factor, an XGBoost model is trained to predict it.



Important variables to symmetry, ; magnitude prediction
)
R? for Symmetryy, 1 magnitude
| H1|L||||||L||Jl
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Vmax: maximum wind speed on azimuth average wind profile;
Rmax: the radius of Vmax;
StormMwspd: storm center maximum wind speed;
My, = ,’3(2),1

Symmetry,; component

0.51

lon: storm center longitude;
trSpeed_cos: translation speed in zonal direction;
VShearMean: shear in meridional direction environment average;

0.4 4

T200: temperature at 200hPa
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Important variables to asymmetry; ; magnitude prediction

R? for Asymmetry; 1 magnitude

0.6 1

0.5 -

trSpeed: translation speed;
Vmax: maximum wind speed on azimuth average wind profile;
Rmax: the radius of Vmax;

rhMean: lower level relative humidity environment average;
trSpeed_sin: translation speed in meridional direction;

trSpeed_cos: : translation speed in zonal direction; M= /a% Lt b% 1
T200: temperature at 200hPa; ' ' '

lon: storm center longitude;
P_S: the gap from potential intensity.
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