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Need predictive models with quantified uncertainties to
accurately anticipate future sea level rise.
Sea level projections from the IPCC 6th Assessment Report, 2021

Several port cities will be at risk from coastal flooding in the future.
Ice flowing from ice sheets to ocean is primary contributor to sea level rise.
Details in: Masson-Delmotte, V. et al. “IPCC, 2021: Summary for Policymakers. In: Climate Change
2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of
the Intergovernmental Panel on Climate Change”, Cambridge University Press. In Press.
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Challenges and the need to exploit problem structure and
account for model error

Severe mathematical and computational challenges place significant barriers on
improving predictability of ice sheet flow models, e.g.,

complex and very high-aspect ratio (thin)
geometry,

highly nonlinear and anisotropic rheology,

extremely ill-conditioned and large-scale
linear and nonlinear algebraic systems that
arise upon discretization,

uncertain basal sliding parameter, basal
topography, geothermal heat flux, and
rheology,

modeling error, etc. 0 1000 2000 3000 4000
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409,545 parameters

1,190,403 parameters

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. “Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet”, Journal of Computational Physics, 296, 348-368 (2015).
Selected as the 2019 SIAM Activity Group on Computational Science and Engineering Best Paper.
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How can we addresss (some of) these challenges?

Learn models from data, i.e., infer
unknown/uncertain parameters from
available data, e.g., satellite measurements
of surface ice flow velocity (statistical
inverse problems governed by PDEs)

Apply/adapt/design fast, mesh-independent,
structure exploiting, inner-product- and
additional uncertainty-aware methods
(scalable, robust and efficient
algorithms)

Collect data in an optimal way in order to
minimize the uncertainty in the inferred
parameters or in some predictive quantity of
interest (optimal experimental design).
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409,545 parameters

1,190,403 parameters

Details in: O. Ghattas and K. Willcox. “Learning physics-based models from data: perspectives from
inverse problems and model reduction”, Acta Numerica, Cambridge University Press (2021).

Noemi Petra (UC Merced) Ice sheet inversion under uncertainty October 28, 2021 4 / 26



The forward problem
Nonlinear Stokes ice sheet model (for viscous, shear-thinning, incompressible fluid)

Invoking the balance of mass and linear momentum:

−∇ · [2γ(u, n) ε̇u − Ip] = ρg in Ω

∇ · u = 0 in Ω

σun = 0 on Γt

u · n = 0, Tσun+ exp(β)Tu = 0 on Γb

u ice flow velocity, p pressure

σu = −Ip+ 2γ(u, n)ε̇u stress tensor

ε̇u = 1
2 (∇u+ ∇uT ) strain rate tensor

γ(u, n) = 1
2A
− 1

n ε̇
1−n
2n

II effective viscosity

ε̇II = 1
2 tr(ε̇2u) second invariant of the

strain rate tensor

ρ density, g gravity

n unit normal vector

β log basal sliding coefficient

T = I − n⊗ n tangential
operator

Γt and Γb top and base
boundaries
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The inverse problem

Use available observations/data d to infer the values of the unknown parameter
field m that characterize a physical process modeled by PDEs, i.e.,

d = F(m) + η.

The map F :M→ Rq is the so-called parameter-to-observable map.

Evaluations of F involve the solution of the Stokes PDE given m, followed by
the application of an observation operator B : V → Rq to extract the
observations from the state.

η accounts for noisy measurements and model errors and is modeled as
η ∼ N (0,Γnoise), i.e., a centered Gaussian at 0 with covariance Γnoise.
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Bayesian formulation of the inverse problem

Describes probability of all models that are consistent with the observations/data
and any prior knowledge about the parameters:

dµpost ∝ exp
{
− 1

2
‖F(m)− d‖2

Γ−1
noise

− 1

2
‖m−mpr‖2C−1

prior

}
.

The first term in the exponential is the negative log-likelihood.

The second term represent the negative log-prior (e.g., Gaussian prior, i.e.,
m ∼ N (mpr, Cprior)).

Goal:

characterize the posterior statistically (MAP point, mean, covariance, etc.)

for functions m (large vectors after discretization)

for expensive F(·)
exploit connection to PDE-constrained optimization
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Inverse problems governed by PDEs

The maximum a posteriori (MAP) point mMAP is defined as the parameter
field that maximizes the posterior distribution:

mMAP : = argmin
m∈M

(− log dµpost(m))

= argmin
m∈M

1

2
‖F(m)− d‖2

Γ−1
noise

+
1

2
‖m−mpr‖2C−1

prior

= argmin
m∈M

1

2
‖B(u)− d‖2

Γ−1
noise

+
1

2
‖m−mpr‖2C−1

prior

,

where u solves the forward Stokes (PDE) problem.

When F is linear, due to the particular choice of prior and noise model, the
posterior measure is Gaussian, N (mMAP, Cpost)

mMAP = Cpost(F∗Γ−1noised+ C−1priormpr), Cpost = H−1 = (F∗Γ−1noiseF + C−1prior )
−1,

where F∗ : Rq →M is the adjoint of F , and H is the Hessian (second
derivative) of the negative-log posterior.

Note: In the general case of nonlinear parameter-to-observable map F the
posterior distribution is not Gaussian.
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Data→Inference→Prediction

inverse problem

input parameters

model
(governing PDEs)

experimental design

prediction quantities

d
a
ta

posterior

prior

1Schematic courtesy of Alen Alexanderian.
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Data→Inference→Prediction

While one can formulate a data-to-prediction framework to quantify
uncertainties from data to inferred model parameters to predictions
with an underlying model of non-Newtonian ice sheet flow, attempting to
execute this framework for the Antarctic ice sheet (or other large-scale
complex models) is intractable for high-dimensional parameter fields using
current algorithms.

Yet, quantifying the uncertainties in predictions of ice sheet models is
essential if these models are to play a significant role in projections of future
sea level.

Goal: design an integrated framework and efficient, scalable algorithms
(under Gaussian approximations of the posterior and prediction) for carrying
out this data-to-prediction process.

Scalable: the cost-measured in number of PDE solves-is independent of not
only the number of processor cores, but importantly the state variable
dimension, the parameter dimension, and the data dimension.

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. “Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet”, Journal of Computational Physics, 296, 348-368 (2015).
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Antarctic ice sheet inversion for basal sliding field
InSAR data, dim: 400k, fwd solver: ymir (T. Isaac et al.)

Left: InSAR-based Antarctica ice surface velocity observations
Right: Inferred basal sliding field (MAP point)

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. “Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet”, Journal of Computational Physics, 296, 348-368 (2015).
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Antarctic ice sheet inversion for basal sliding field
InSAR data, dim: 400k, fwd solver: ymir (T. Isaac et al.)

Left: Recovered ice surface velocity observations
Right: Inferred basal sliding field (MAP point)

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. “Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet”, Journal of Computational Physics, 296, 348-368 (2015).

Noemi Petra (UC Merced) Ice sheet inversion under uncertainty October 28, 2021 11 / 26



Gaussian approximation of the posterior

The standard deviations of the pointwise marginals of the prior distribution (left)
and of (the Gaussian approximation of) the posterior distribution (right).

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. “Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet”, Journal of Computational Physics, 296, 348-368 (2015).
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Data→Inference→Prediction for ice sheet flow

The gradient (left) and the “influential direction” in parameter space (right) for the ice
mass flux from Totten Glacier to ocean. The mean and standard deviation of the

prediction probability distribution for the ice mass flux is 71.24± 0.30 Gt/a.

Details in: T. Isaac, N. Petra, G. Stadler, and O. Ghattas. “Scalable and efficient algorithms for the
propagation of uncertainty from data through inference to prediction for large-scale problems, with
application to flow of the Antarctic ice sheet”, Journal of Computational Physics, 296, 348-368 (2015).
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Hessian for Antarctic ice flow inverse problem
Eigenvalue decay of prior-preconditioned data misfit Hessian

The data are informative about only a low-dimensional subspace within the
high-dimensional parameter space (here only 5000 out of 1.19 million!).

The data-to-prediction process is sensitive only to the true information
contained within the data, as opposed to the data or parameter dimensions.
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Joint parameter and state dimension reduction
via proper orthogonal decomposition and discrete empirical interpolation
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Details in: K. Kim, B. Peherstorfer, T. Cui, Y. Marzouk, K. Willcox, O. Ghattas, and N. Petra. “Joint
Parameter and Model Dimension Reduction for Bayesian Inverse Problems with Application to a
Nonlinear Stokes Ice Sheet Flow”. In preparation.
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Joint parameter and state dimension reduction
The prior and posterior variance (ISMIP-HOM benchmark problem)
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Full posterior: parameter dimension: 120, state dimension: 4,920
Jointly approximated posterior: parameter dimension: 10, state dimension:
30 (200 dim. DEIM)
60,000 samples from the full posterior, 15,000 samples from the
jointly-approximated posterior
H-pCN (Hessian-informed Crank-Nicolson) MCMC method is used to sample.
Details in: K. Kim, U. Villa, M. Parno, N. Petra, Y. Marzouk, and O. Ghattas.. “hIPPYlib-MUQ:
Scalable Markov chain Monte Carlo sampling methods for large-scale Bayesian inverse problems
governed by PDEs”. To be submitted. (https://github.com/hippylib/hippylib2muq)
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Fast high-rank Hessian approximation for Bayesian ice
sheet inverse problems via H-matrices
Greenland’s Humboldt glacier
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Left: Block spectra of the Hessian. Right: Comparison of the hierarchical
off-diagonal low-rank (HODLR) and global low-rank (LR) approaximations.

Details in: T. Hartland, G. Stadler, M. Perego and K. Liegeois, and N. Petra. “Hierarchical
Off-Diagonal Approximation of Hessians in Inverse Problems”, In preparation.
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Fast high-rank Hessian approximation for Bayesian ice
sheet inverse problems via H-matrices
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Left: Error versus Krylov iterations.
Right: Spectrum of the preconditioned Hessian operator. (H1-matrix format)

Details in: N. Alger, T. Hartland, N. Petra and O. Ghattas. “Fast matrix-free approximation of
smoothly varying blur operators, with application to Hessians in PDE-constrained inverse problems with
highly informative data”, In preparation.

Noemi Petra (UC Merced) Ice sheet inversion under uncertainty October 28, 2021 18 / 26



Inverse problem governed by random PDE forward problem

In reality, models have multiple sources of uncertainties and randomness (e.g.,
models have multiple uncertain coefficients, unknown or random source terms,

and parameters that cannot be inferred.)

Inverting for all unknown/uncertain parameters at once is not
practical/feasable (due to high(er) parameter dimensions, more severe
ill-posedness).)

Goal: choose a primary parameter of interest to infer for and account for
additional uncertainties using stochastic forward models:

r(u(·, ξ),m(·); ξ(·)) = 0 a.s.

r ∈ D a.e. a stochastic PDE, D ⊂ Rd (d = 1, 2, 3) domain;

u ∈ D × Ω→ R state/forward variables;

m ∈M inversion parameters;

ξ : Ω→ Rp (p = 2, 3) defined by means of a probability space (Ω, F,P),
where Ω is the sample space (the set of all possible events), F is the
σ−algebra of events, and P : F → [0, 1] is a probability measure.
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Premarginalization over secondary uncertain parameters
using the Bayesian Approximation Error (BAE) approach

Key idea: carry out estimation of the primary uncertain parameter β while
taking into account the uncertainty in the auxiliary parameter a:

d = F̃(β, a) + η = (F(β) + ε) + η = F(β) + ν

F̃(β, a): the accurate parameter-to-observable mapping

F(β) = F̃(β, a∗): the approximative parameter-to-observable mapping, where
the auxiliary parameter a is fixed to the mean value a∗ (assume a is Gaussian
distributed)

η = d− F̃(β, a) η ∼ N (0,Γnoise) (data noise)

ε = F̃(β, a)−F(β) ε ∼ N (ε∗,Γε) (approximation/model error)

ν = ε+ η ν ∼ N (ν∗,Γν) (total error)

ν∗ = ε∗ + η∗: the mean; Γν = Γε + Γnoise: the total error covariance

Details in:

Jari Kaipio and Erkki Somersalo, Statistical and Computational Inverse Problems, Springer, 2005

O. Babaniyi, R. Nicholson, Umberto Villa and Noemi Petra. “Inferring the basal sliding coefficient for
the Stokes ice sheet model under rheological uncertainty”, Cryosphere, 2021.
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Additional uncertainty-aware inversion
Approximate posterior covariances

The reference case (REF):

πlike(d|β) ∝ exp

{
−1

2

∥∥∥F̃(β, atrue)− d
∥∥∥2
Γ−1

noise

}
Γpost = (F̃T (βMAP, atrue)Γ

−1
noiseF̃(βMAP, atrue) + Γ−1prior )−1

The conventional error model (CEM):

πlike(d|β) ∝ exp

{
−1

2
‖F(β)− d‖2Γ−1

noise

}
Γpost = (FT (βMAP)Γ−1noiseF(βMAP) + Γ−1prior )−1

The BAE approximation error approach (BAE):

πlike(d|β) ∝ exp

{
−1

2
‖F(β)− d+ ν∗‖2Γ−1

ν

}
Γpost = (FT (βMAP)Γ−1ν F(βMAP) + Γ−1prior )−1
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Low-dimensional structure for the model error
ISMIP-HOM benchmark problem
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The spectrum of the approximation errors covariance matrix Γε for small (orange)
and large (blue) approximation errors and for increasing samples sizes.

Noemi Petra (UC Merced) Ice sheet inversion under uncertainty October 28, 2021 22 / 26



Correlated/structured/non-diagonal “noise” covariances
ISMIP-HOM benchmark problem

;

The correlation matrix of the approximation error for small (left) and large (right)
error cases. The 2× 2 block structure is due to velocity measurements in the x-

and y-directions.
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The “truth” may not be supported by the posterior
ISMIP-HOM benchmark problem

(prior) (REF) (CEM) (BAE)

red: true β, blue: the mean, green: samples, gray shading: ± 2 standard deviation
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hIPPYlib: Inverse Problems PYthon library

Supported by NSF-SSI2: Integrating Data with Complex Predictive Models under
Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
(Co-PIs: O. Ghattas (UT Austin), Y. Marzouk (MIT), N. Petra (UC Merced), M.
Parno (CRREL) and U. Villa (Washington University in St. Louis))

hIPPYlib contains the implementation of state-of-the-art scalable adjoint-based
algorithms (and their extensions) for PDE-based deterministic and Bayesian inverse
problems.

hIPPYlib builds on FEniCS (a parallel finite element element library) for the
discretization of the PDEs, and on PETSc (Portable, Extensible Toolkit for
Scientific Computation) for scalable and efficient linear algebra operations and
solvers.

hIPPYlib is implemented in a mixture of C++ and Python and has been released
under the GNU General Public License version.

hIPPYlib 3.0. can be downloaded from:

http://hippylib.github.io

Details in: U. Villa, N. Petra, and O. Ghattas. “An Extensible Software Framework for Large-Scale
Deterministic and Linearized Bayesian Inverse Problems”. ACM Transactions on Mathematical
Software, Vol. 47, No. 2, 2021.
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Summary and Conclusions

We considered the problem of inferring the basal sliding coefficient field for
uncertain Stokes ice sheet forward model from (synthetic) surface velocity
measurements under additional uncertainty.

To account for the associated model uncertainties (error) we employed the
Bayesian Approximation Error (BAE) approach to approximately
premarginalize over both the noise in measurements and uncertainty in the
forward model.

Our findings suggest that accounting for secondary uncertainties in the
inference is crucial.

The results also suggest that hierarchical off-diagonal low-rank approximation
and H-matrix compression combined with model reduction techniques may be
a path forward towards solving large-scale Bayesian (ice sheet) inverse
problems.
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