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“A digital twin is a set of computational models that evolve over time 
to persistently represent the structure, behavior, and context of 
a unique physical asset, and informs decisions that realize value”

[Digital Twin: Definition & Value – AIAA and AIA Position Paper, Dec. ‘20]

Digital twins have the potential to underpin intelligent automation 
across engineering, science, and society by enabling:
• Asset-specific analysis and prediction
• Data-driven decision making
• Fully integrated asset lifecycles (digital thread)
• Knowledge transfer between assets

Wide range of proposed applications:
Structural health monitoring, certification, fleet management,
manufacturing, healthcare, smart cities, education, climate science, … PC:

O. Ghattas

PC: 
G. Foss, 

H. Liu, 
M. Sacks 

What is a digital twin?



DIGITAL TWINS must integrate 
DATA, MODELS & DECISIONS

Currently, state-of-the-art digital twins are largely the result of 
highly specialized, application-dependent implementations that 
require considerable expertise and resources
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A rigorous, general, and unified MATHEMATICAL & 
COMPUTATIONAL FOUNDATION is needed 
to scale up digital twin development and deployment

How can we move toward accessible, robust, and 
efficient digital twin implementations at scale?
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This talk:

A Mathematical & 
Computational 
Foundation 
for Digital Twins
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Demonstration: UAV Structural Digital Twin

Modular, scalable algorithms for Bayesian 
inference, prediction, and decision-making.
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Mathematical Abstraction

Which quantities define an asset-twin system?
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Probabilistic Graphical Model

How do these quantities interact and evolve?
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Mathematical abstraction of an asset-twin system
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A probabilistic graphical model for the asset-twin system
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Traditional feedback control
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• Assumptions encoded in the model:
‒ Markovian dynamics for both physical state and digital state
‒ Cannot directly observe physical state
‒ Control inputs are informed by digital twin analysis

• Conditional independence structure of the graph admits a factorization of the belief state:

rewards

digital state transition

quantities of interest

control

assimilation

t = 0 t = now t = future

Digital Space
Physical Space

Mathematically defining the models comprising a digital twin
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Digital twin use-case Mathematical formulation via
probabilistic graphical model

Automatic monitoring, 
virtual inspections, 
simulation-based certification

Data Assimilation:

Forecasting, planning, 
predictive maintenance Prediction:

Operations: Tradeoff between
• Favorable asset state
• Digital twin accuracy
• Required control effort
• Observation acquisition cost

Multi-objective 
Optimization:

Learn from historical data,
transfer insights to similar assets Learning:

Unifying digital twin functionality via inference and optimization
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Goal: Create a digital twin that adapts to the evolving structural health of a UAV, 
providing near real-time capability estimates that enable dynamic decision making.

Demonstration:
Creating and evolving a structural digital twin 
for a self-aware unmanned aerial vehicle
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predictive digital twin

sense 
structural 

data

estimate 
structural 

state

predict 
flight 

capability

dynamically 
replan 

mission

Kratos Airbus Wing



Custom sensor suite
Internal 

structure

Hardware Testbed:
Customized 12ft Telemaster aircraft

Access panel

Fuselage mount

Ailerons
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Physics-based structural model
Finite element model + reduced-order model

Reduced-order model
static condensation reduced 
basis element (SCRBE) 
method; ~0.03 seconds
per structural analysis
(1000x speedup)

root top skin

top skin

bottom skin

spar 
caps

shear 
web

ribs

flaps

aileron 
linkages

circular rods

Finite element model
multiple material types (carbon fiber, carbon rod, plywood, 
foam) & multiple element types (solid, shell, beam);
~55 seconds per structural analysis

𝜀 =
1
2
𝛻𝑢 + 𝛻𝑢 ! + boundary conditions

+ initial conditions
𝜎 = 𝐶: 𝜀

force/displacement
equation of motion

𝜌
𝜕"𝑢
𝜕𝑡"

=
𝜕𝜎
𝜕𝑥

+
𝜕𝜎
𝜕𝑦

+ 𝐹

strain-displacement 
equations

constitutive 
equations
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Phase 1: baseline model to calibrated digital twin 
via principled and repeatable Bayesian calibration
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Image adapted from 
Kapteyn et al., Nature Computational Science, Vol. 1, No. 5, 2021.
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Digital state
(model input space)

• Gaussian prior for the Young’s modulus (based on UAV material specifications)
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• Gaussian prior for the Young’s modulus (based on UAV material specifications)
• Likelihood (non-Gaussian) estimated by sampling + kernel density estimation
• Bayesian update via particle filter posterior calibrated to as-manufactured UAV
• Reward measures reduction in variance achieved via calibration

Digital state
(model input space)

Quantity of interest 
(model output space)

structural model
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Phase 2: Leverage the calibrated reduced-order 
models for data-driven health monitoring and 
self-aware decision making
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Image adapted from 
Kapteyn et al., Nature Computational Science, Vol. 1, No. 5, 2021.



• Aircraft performs a mission while undergoing in-flight 
structural health degradation

• 24 wing-mounted sensors provide noisy strain data

• Digital twin is dynamically updated and used to drive 
mission re-planning

• Scenario is simulated using

t = 0 t = now t = future

Digital Space
Physical Space

UAV Twin
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Simulated self-aware UAV demonstration
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Dynamic digital twin updating via sequential Bayesian inference 
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• Control policy maps from the current belief to a control action

• Maximize expected accumulated reward over prediction horizon

• We use maximum a posteriori estimates 𝑑∗, 𝑞∗ to define 
(suboptimal) policy

• Solve offline via dynamic programming (value iteration)

Planning and optimal control via reinforcement learning
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• Multi-objective planning reward function

• Optimal policies only depend on  
• Structural model analysis has revealed that      does not affect 

structural integrity, as measured by 

tradeoff parameter,    , 
balances UAV 
aggression with 
self-preservation
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Results: Self-aware control policies
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Summary
&

Conclusion

A mathematical and computational foundation to help 
enable predictive digital twins at scale that is…

• General 
– Define, analyze, compare digital twins across different 

application areas and different use-cases

• Rigorous
– Bayesian estimation, end-to-end uncertainty quantification, 

data-driven learning, principled decision-making

• Flexible
– Models comprising the digital twin can be physics-based, data-

driven, or derived from expert knowledge

• Scalable
– Principled
– Repeatable

Many open challenges!
Tailored inference algorithms; active learning; transfer learning;
optimal experimental design; model adaptation/enrichment; … 20



Technical papers:

A Probabilistic Graphical Model Foundation for Enabling Predictive Digital Twins at Scale
Kapteyn, M., Pretorius, J. and Willcox, K., Nature Computational Science, Vol. 1, No. 5, May 2021.

Data-driven physics-based digital twins via a library of component-based reduced-order models 
Kapteyn, M., Knezevic, D., Huynh, D.B.P., Tran, M. and Willcox, K. Int. J. Numerical Methods in Eng., 2020 

Overview articles:

Creating “digital twins” at scale
Ham, B., MIT News, June 2021

Digital Twins: Where Data, Mathematics, Models, and Decisions Collide
Kapteyn, M., and Willcox, K., SIAM News, Sept. 2021

Get in touch:

Want to learn more?

: https://michael.kapteyn.nz/ : Michael-Kapteyn
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