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The Human-Driven Experiment Loop
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The Autonomous Experiment Loop
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A Venn Diagram for ML and Active
Learning

Mathe

Supervised Learning
e Labeled data

Unsupervised Learning
e Unlabeled data



What is Autonomous Data
Acquisition

CAMERA Worksho AFE
and Main Takeaways $

Gaussian-Process-Driven
Autonomous Data

Acquisition

Mathematical
Optimization for
AFE and ML
Bringing
Autonomous

Discovery to the
Community




CAMERA Workshop on
AE and Main Takeaways




SOENNNS

' M |
Applied Math

: : : : N
Autonomous Discovery for Science and Engineering

A three-day workshop for sharing recent
developments in autonomous methods,

sponsored by CAMERA —
The Center for Advanced Mathematics for Energy Autonomous Discovery in
Research Applications Science and Engineering

A workshop organized by The Center
For Advanced Mathematics For Energy

(CAMERA)

Dates: April 20th - 22nd, 2021

Methods and Algorithms: Gaussian Processes, Neural
Networks, Reinforcement Learning, New Math,
Optimization, Data Analytics and Infrastructure, UQ.

Tutorials: gpCAM, Summit, CamLink, Escalate, Bluesky,
Atinary SDLabs, DataFed, Cameo, AtomAI, ART

Applications: Microscopy, Spectroscopy, X-ray
Scattering, Neutron Scattering, Autonomous Synthesis
& Materials Discovery, Robotics & Remote Access

https://autonomous-discovery.lbl.gov/ DOI: https://doi.org/10.2172/1818491
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What is your background?
512 responses

@ Computational Biology
@ Radiation Therapy

@ Lead a Data Science team at PNNL b..

[ ] Computer Science, Data Science
@ X-ray science

@ Bioengineering

@ computer science

@ Chemiclal Engineer
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@ Computer Science + Math
PhD student in Materials Science /
@ Chemistry, Biology, Environmental <
@ Mechanical Engineering + Materials
Energy Sciences
@ Physics/geoscience
@ mechanical engineering
@ Robotics
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@ Physics

@ Mathematics
Chemistry

@ Biology

@ Materials Sciences

@ Data Science

@ Environmental Science

@ Geoscience
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@ Chemical Physics
Computer science and control
QIT
@ computational biophysics
@ chemical engineering
[ ) Operations Research

@ Math, Stats, biology, and environment...

@ Quantum Computing
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@ Computer Science

@ Chemical Engineering

@ Chemical Engineering

@ Mechanical Engineering
Engineering

@ Computer science

® engineering

@ Electrical Engineering
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@ computational mechanics
@ Application to IT Infrastructure

Engineering in support of Joint Genome

Institute..

@ Computer Engineering
Optimization, Chemical engineering,
machine lerning

@ social sciences, ethics
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Takeaways and Achievements: Methods/Algorithms

Modelling

Reinforcement
Gaussian and Learning
other stochastic
processes

Take-Home Message 1: Gaussian processes and
reinforcement learning are the most popular techniques for
control, in different data regimes.

Training and Decision-Making

F’ F: F:
Y e w1 [ w2 ||
ey P Qe[

Model
Constraints
C

—>® PC

0] B e 7 e E
P z1 P z2 P z3

Take-Home Message 4.: Efficient mathematical
optimization under uncertainty and subject to
constraints has come far but remains a challenge.

Hardware/Robotics
"o

Belief
modeling

Analysis

Design

y

il

Fabrication Robotic transfer Mechanical testing

Take-Home Message 2: The data-analysis Take-Home Message 3: Instrument systems
step is more and more often done are increasingly built with automation in
automatically data-science tools (PCA, NN, mind.

Clustering,...).

Communication Infrastructure

Take-Home Message 5: Data-management
systems are emerging using lower-level tool
(control, optimization, ...) to allow for
standardization.



Takeaways and Achievements: Application

X-Ray Scattering

Autonomous Analytics and Control in X-ray Scattering
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Challenges

The Role of Co-Design: Much of the work is performed through co-design teams, bringing
together needed expertise. The work has aspects of theory, modeling, algorithm design, Optimization
data analysis, workflow, and software engineering.

Integrating Across Required Expertise: Teams (or in some cases, individuals) working
in autonomous design often take on all the required roles, which requires a large breadth of
expertise: it is challenging for a team to excel in all the necessary aspects.

Sharing Developments: There are significant opportunities to share advances across autonomous
efforts. However, there is often inconsistent nomenclature and problem formulation.

Workflow and Infrastructure: For the most part, individual efforts center around homegrown
workflows and infrastructures. There are opportunities to build work tools and infrastructures that
can be shared.

Software
Development/Scrip
ting

u3disa(-0)D

Software: Understandably, many of the efforts described within are aimed at solving a particular
set of scientific problems, and the emphasis is not on generalizable software. Openly-available
software that is well-documented and properly maintained would be a step forward.

Shared Testbeds and Reproducible Research: It is challenging to cross-test different algorithms
and methodologies with common accessible (FAIR) datasets with maintained standards.

rlR(

Data: Data != data. The structure of data has to be discussed before data taking and ML
applications.

Compute Resources: The field requires a new kind of compute-resource allocation, which keeps
resources available throughout the experiment.

Instrument
Scientists/Practitio
ners/Users

durindwon
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Gaussian Process Regression in a Nutshell
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Our Very First Experiment: A Nanoparticle Stain Mapping Experiment

Facility: NSLS2, CFN @ BNL | Technique: SAXS | Achievement: Commissioning experiment

A Kriging-Based Approach to Autonomous Experimentation with
Applications to X-Ray Scattering

g !:’cuuo‘mon LiGHT Source II

&

Center for Functional Nanomaterials
Brookhaven National Laboratory




Autonomous SAXS Exploration of Nanoscale Ordering in a Blade-Coated
Polymer-Grafted Nanorod Film

Facility: AFRL and NSLS II | Technique: SAXS | Achievement: 15% of data required, higher resolution in areas of interest
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Autonomous Steering of ARPES Data Acquisition N\ N
ALS )

Facilities: ALS @ LBNL | Technique: ARPES | Achievement: 12% of data required l
ADVANCED LIGHT SOURCE

Energy, w

K-Means-Driven Gaussian Process Data Collection for
Angle-Resolved Photoemission Spectroscopy

Charles N. Melton, Marcus M. Noack, Taisuke Ohta, Thomas E. Beechem, Jeremy Robinson,Xiaotian Zhang, Aaron Bostwick, Chris Jozwiak, Roland J. Koch,

Petrus H.
Zwart, Alexander Hexemer, and Eli Rotenberg



Autonomous Control of Synchrotron Infrared Spectroscopy

Facility: ALS @ LBNL | Technique: IR Spec. Micr. | Achievement: ~5% of data required, collected in ~10% of the time, materials targeted
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Autonomous Scanning Tunneling Spectroscopy f\ "

Facility: Molecular Foundry @ LBNL | Technique: STS Microscopy | Achievement: ~4% of data required, ~35 hrs vs ~1mo acq. time BERKELEY LAB

MOLECULAR la
FOUNDRY

Scanning Probe Microscopy

STM / STS

] structure and
electronic properties

Investigate Next
Frontiers in 2D
Quantum Materials
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Thomas et al., arxiv:2110.03351 (2021)



The Power of the RKHS: Domain-Informed Symmetry Constraints — Six-Fold
Symmetry




Physics Knowledge in the Form of Periodicity for X-Ray Scattering

Facility: NIST and NSLS II | Technique: SAXS/GISAXS | Achievement: Use of non-stationary kernels to learn and exploit local characteristics
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http://drive.google.com/file/d/1F7ZZBU0JfZAey61T1YfN4AbBTWiCrwwr/view

Physics-Aware Prediction of Lattice Thermal Conductivity of Alloys

Facility: SLAC @ Stanford | Technique: Diffusivity, Heat Capacity and Density Measurements | Achievement: Physics-informed GP-driven steering

Physics-Based Model Data-Driven GPR Physics-Aware GPR
lel
1.00
VFeSb Klemens Vresh 8.000
10 0.85
6.833
0.70
85 o 5.667
* 0.55
VE 4500
703 0.40
- 3.333
S 0.25
55 G NbFesb 25 Tafesb || o 2er
° . NbFeSb TaFeSb
< 1.000
4.0 ‘—‘: 3.500 3,5N
IS
E 2.933 2.933
25 %
.a 2.367 2.367
=
NbFeSb 10 3 160 1.800
1233 1233
0.667 0.667

0.100
0.100 j

Suchismita Sarker, Apurva Mehta

NATIONAL ACCELERATOR LABORATORY



Targeted Autonomous Neutron Scattering

Facility: ILL, France | Technique: Inelastic Neutron Scattering | Achievement: More efficient exploration, experiment time decreased from several days to one night
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The Traditional Training/Optimization Workflow needs a
Large Number of Function Evaluations and Blocks the
Main Thread

(RO
AR
A ORI
A

GRS
AR AN
y RN
P A
RN A
RN o
R ”
A ¢
R i
ARRORORA X
(N o : L
BT
SRR
a’.w‘.‘,.).".:.:.:,»‘.'g\‘.t‘u
A RN
BRI
R
AR
RN
BN
e VN
(R : 2 AR
e
S A
X R
AR
S "«‘w}‘«"““ S

AR
O
WA
ARG

ARG R
i “:,Q‘n:.:e};:‘:,v:.",\v,‘:‘\;: ‘A::t“ ¢
AU

RO
4
¢

WP,




0.26436384, 0.21300795, 0.19834864,
0.68064155, 0.66793227, 0.02274104,
0.13523289, 0.85643443, 0.43357488,
0.43558082, 0.95638452, 0.99928695,
0.09019633, 0.03045269, 0.55291218,
0.68064155, 0.66793227, 0.02274104,
0.13523289, 0.85643443, 0.43357488,
0.43558082, 0.95638452, 0.99928695,
0.68064155, 0.66793227, 0.02274104,
0.13523289, 0.85643443, 0.43357488,
0.43558082, 0.95638452, 0.99928695,
0.43558082, 0.95638452, 0.99928695,
0.09019633, 0.03045269, 0.55291218,
0.68064155, 0.66793227, 0.02274104,
0.13523289, 0.85643443, 0.43357488,
0.43558082, 0.95638452, 0.99928695,
0.68064155, 0.66793227, 0.02274104,
0.13523289, 0.85643443, 0.43357488,
0.43558082, 0.95638452, 0.99928695,
0.09019633, 0.03045269, 0.55291218,
0.68064155, 0.66793227, 0.02274104,
0.13523289, 0.85643443, 0.43357488,
0.43558082, 0.95638452, 0.99928695,
0.68064155, 0.66793227, 0.02274104,
0.13523289, 0.85643443, 0.43357488,

0.20183792, 0.82454492,0.81746336,
0.37098925, 0.66477699,0.71282514,
0.71829634, 0.98986933,0.60671197,
0.63067478, 0.38601846,0.52014594,
0.66801905, 0.75265345,1.64352323,
0.37098925, 0.66477699,0.71282514,
0.71829634, 0.98986933,0.60671197,
0.63067478, 0.38601846,0.52014594,
0.37098925, 0.66477699,0.71282514,
0.71829634, 0.98986933,0.60671197,
0.63067478, 0.38601846,0.52014594,
0.63067478, 0.38601846,0.52014594,
0.66801905, 0.75265345,1.64352323,
0.37098925, 0.66477699,0.71282514,
0.71829634, 0.98986933,0.60671197,
0.63067478, 0.38601846,0.52014594,
0.37098925, 0.66477699,0.71282514,
0.71829634, 0.98986933,0.60671197,
0.63067478, 0.38601846,0.52014594,
0.66801905, 0.75265345,1.64352323,
0.37098925, 0.66477699,0.71282514,
0.71829634, 0.98986933,0.60671197,
0.63067478, 0.38601846,0.52014594,
0.37098925, 0.66477699,0.71282514,
0.71829634, 0.98986933,0.60671197

o
i

il
T

o 0
A T ‘.:" AN
A

Minimizing Number of Function Evaluations:
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Optimization of the Log-Likelihood and Acquisif unctions with HGDL

Using DASK, pytorch and GPUs for High Pe nce Asynchronous Distributed =
Training Davi

d Perfﬁﬁan

HGDL leads to:
1. aset of different interpretations of the data
2. asetof optimal measurements
3. HPCreadiness of training and prediction
4. Asynchronous training
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HGDL:
Distributed
e




The products are three separate APIs that are built on top
of each other: -

e(p, x)

gpC/ \M ¥

fvGP: A flexible
multi-task Gaussian
process tool

HGDL: Asynchronous Distributed
Optimizer




pip install gpcam

from gpcam.autonomous_experimenter import AutonomousExperimenterGP
from instrument import instrument
import numpy as np

parameters = np.array([[3.0,45.8],
[4.0,47.011)
init_hyperparameters = np.array([1,1,1]
hyperparameter_bounds = np.array([[0.01,100],[0.01,100.0],[0.01,100]1])

my_ae = AutonomousExperimenterGP (parameters, instrument, init_hyperparameters,
hyperparameter_bounds, init_dataset_size=10

my_ae.train()

my_ae.go()

def instrument (data) :
for entry in data:
entry["value"] = np.sin(np.linalg.norm(entry["position"]))
return data

More information: gpcam.lbl.gov



https://gpcam.lbl.gov/
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