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Automated Data 
Analysis/Dim. 

Reduction
● PCA
● NMF
● NNs
● Integration
● Peak Finding

Autonomous 
Decision Making
● Stochastic 

Processes
● Reinforcement 

Learning
● Optimization

Automated Data 
Acquisition

● Robotics
● Remote Access

Automated Sample 
Preparation

● In Situ/Ex Situ
● 3D Printing 

Communication
● By File
● ZMQ
● S3

The Autonomous Experiment Loop

Active 
Learning



ML (AI)

Supervised Learning
● Labeled data

Unsupervised Learning
● Unlabeled data

Active 
Learning

Mathematics:
● Function Appr.
● Optimization
● Topology
● Lin. Algebra
● Abstract Algebra
● Calculus
● Probability Theory
● Statistics

A Venn Diagram for ML and Active 
Learning
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Autonomous Discovery for Science and Engineering

A three-day workshop for sharing recent 
developments in autonomous methods, 
sponsored by CAMERA — 
The Center for Advanced Mathematics for Energy 
Research Applications

Dates: April 20th - 22nd, 2021

https://autonomous-discovery.lbl.gov/ DOI: https://doi.org/10.2172/1818491

Methods and Algorithms: Gaussian Processes, Neural 
Networks, Reinforcement Learning, New Math, 
Optimization, Data Analytics and Infrastructure, UQ

Tutorials: gpCAM, Summit, CamLink, Escalate, Bluesky, 
Atinary SDLabs, DataFed, Cameo, AtomAI, ART

Applications: Microscopy, Spectroscopy, X-ray 
Scattering, Neutron Scattering, Autonomous Synthesis 
& Materials Discovery, Robotics & Remote Access



The Organizing Committee

Petrus Zwart, LBNL

Héctor García Martín, LBNL Nicholas Schwarz, ANL B. Reeja Jayan, CMU Eva M. Herzig, Bayreuth U.Simon Billinge, Columbia U.

Marcus Noack, LBNL Apurva Mehta, SLAC Daniela Ushizima, LBNL James Sethian, UCB

Alex Hexemer, LBNL

Kevin Yager, BNL

Bobby Sumpter, ORNL Martin Boehm, ILL Sergei Kalinin, ORNL Aaron Gilad Kusne, NIST







Gaussian and 
other stochastic 
processes

Reinforcement 
Learning

Take-Home Message 4: Efficient mathematical 
optimization under uncertainty and subject to 
constraints  has come far but remains a challenge. 

Modelling Analysis

Training and Decision-Making

Take-Home Message 1: Gaussian processes and 
reinforcement learning are the most popular techniques for 
control, in different data regimes.

Take-Home Message 2: The data-analysis 
step is more and more often done 
automatically data-science tools (PCA, NN, 
Clustering,...).

Takeaways and Achievements: Methods/Algorithms

Hardware/Robotics

Take-Home Message 3: Instrument systems 
are increasingly built with automation in 
mind.

Take-Home Message 5: Data-management 
systems are emerging using lower-level tool 
(control, optimization, ...) to allow for 
standardization.

Communication Infrastructure



Takeaways and Achievements: Application

X-Ray Scattering Microscopy
Spectroscopy

Materials Science Neutron Scattering Biology



Challenges

The Role of Co-Design: Much of the work is performed through co-design teams, bringing
together needed expertise. The work has aspects of theory, modeling, algorithm design,
data analysis, workflow, and software engineering. 

Integrating Across Required Expertise: Teams (or in some cases, individuals) working
in autonomous design often take on all the required roles, which requires a large breadth of
expertise: it is challenging for a team to excel in all the necessary aspects. 

Sharing Developments: There are significant opportunities to share advances across autonomous 
efforts. However, there is often inconsistent nomenclature and problem formulation.

Workflow and Infrastructure: For the most part, individual efforts center around homegrown 
workflows and infrastructures. There are opportunities to build work tools and infrastructures that 
can be shared.

Software: Understandably, many of the efforts described within are aimed at solving a particular 
set of scientific problems, and the emphasis is not on generalizable software. Openly-available 
software that is well-documented and properly maintained would be a step forward.

Shared Testbeds and Reproducible Research: It is challenging to cross-test different algorithms 
and methodologies with common accessible (FAIR) datasets with maintained standards.

Data: Data != data. The structure of data has to be discussed before data taking and ML 
applications. 

Compute Resources: The field requires a new kind of compute-resource allocation, which keeps 
resources available throughout the experiment. 
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Gaussian Process Regression in a Nutshell
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Our Very First Experiment: A Nanoparticle Stain Mapping Experiment
Facility: NSLS2, CFN @ BNL | Technique: SAXS | Achievement: Commissioning experiment 

A Kriging-Based Approach to Autonomous Experimentation with 
Applications to X-Ray Scattering Marcus M. Noack, Kevin G. Yager, 
Masafumi Fukuto, Gregory S. Doerk, Ruipeng Li & James A. Sethian 



Autonomous SAXS Exploration of Nanoscale Ordering in a Blade-Coated 
Polymer-Grafted Nanorod Film
Facility: AFRL and NSLS II | Technique: SAXS | Achievement: 15% of data required, higher resolution in areas of interest

J. Streit, R. Vaia (AFRL), M. Fukuto, R. Li 
(BNL/NSLS-II), K. Yager (BNL/CFN), M. 
Noack (LBNL/CAMERA)

Grain Size



Autonomous Steering of ARPES Data Acquisition
Facilities: ALS @ LBNL | Technique: ARPES | Achievement: 12% of data required

K-Means-Driven Gaussian Process Data Collection for
Angle-Resolved Photoemission Spectroscopy
Charles N. Melton, Marcus M. Noack, Taisuke Ohta, Thomas E. Beechem, Jeremy Robinson,Xiaotian Zhang, Aaron Bostwick, Chris Jozwiak, Roland J. Koch, 
Petrus H.
Zwart, Alexander Hexemer, and Eli Rotenberg
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Hoi-Ying Holman, Petrus 
Zwart, Liang Chen, Steven 
Lee

Autonomous  Control of Synchrotron Infrared Spectroscopy
Facility: ALS @ LBNL | Technique: IR Spec. Micr. | Achievement: ~5% of data required, collected in ~10% of the time, materials targeted



Scanning Probe Microscopy

STM / STS 
🡪 structure and 

electronic properties

SiC(0001)

Graphene
WS

2

Investigate Next 
Frontiers in 2D 
Quantum Materials

Thomas et al., arxiv:2110.03351 (2021)

Autonomous Scanning Tunneling Spectroscopy
Facility: Molecular Foundry @ LBNL | Technique: STS Microscopy | Achievement: ~4% of data required, ~35 hrs vs ~1 mo acq. time 



The Power of the RKHS: Domain-Informed Symmetry Constraints — Six-Fold 
Symmetry 

Martin Boehm
Paolo Mutti
Tobias Weber



Kevin Yager, Masafumi Fukuto, Jonathan Seppala @ CFN, BNL, NIST

Physics Knowledge in the Form of Periodicity for X-Ray Scattering
Facility: NIST and NSLS II | Technique: SAXS/GISAXS | Achievement: Use of non-stationary kernels to learn and exploit local characteristics

http://drive.google.com/file/d/1F7ZZBU0JfZAey61T1YfN4AbBTWiCrwwr/view
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Data-Driven GPR Physics-Aware GPR

Suchismita Sarker, Apurva Mehta

Physics-Aware Prediction of Lattice Thermal Conductivity of Alloys 
Facility: SLAC @ Stanford | Technique: Diffusivity, Heat Capacity and Density Measurements | Achievement: Physics-informed GP-driven steering



Targeted Autonomous Neutron Scattering 
Facility: ILL, France | Technique: Inelastic Neutron Scattering | Achievement: More efficient exploration, experiment time decreased from several days to one night

Martin Boehm
Paolo Mutti
Tobias Weber
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The Traditional Training/Optimization Workflow needs a 
Large Number of Function Evaluations and Blocks the 
Main Thread
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Minimizing Number of Function Evaluations: 
Asynchronous Distributed Training

Kill/Restart/Ingest New Data



Optimization of the Log-Likelihood and Acquisition Functions with HGDL

HGDL leads to:
1. a set of different interpretations of the data
2. a set of optimal measurements
3. HPC readiness of training and prediction
4. Asynchronous training

Using DASK, pytorch and GPUs for High Performance Asynchronous Distributed 
Training David Perryman
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fvGP: A flexible multi-task 
Gaussian process tool 

HGDL: Asynch. 
Distributed Optimizer 



The products are three separate APIs that are built on top 
of each other:

HGDL: Asynchronous Distributed 
Optimizer 

fvGP: A flexible 
multi-task Gaussian 

process tool 



    pip install gpcam
    

from gpcam.autonomous_experimenter import AutonomousExperimenterGP
from instrument import instrument
import numpy as np

parameters = np.array([[3.0,45.8],
                       [4.0,47.0]])
init_hyperparameters = np.array([1,1,1])

hyperparameter_bounds =  np.array([[0.01,100],[0.01,100.0],[0.01,100]])

my_ae = AutonomousExperimenterGP(parameters, instrument, init_hyperparameters,
                                 hyperparameter_bounds,  init_dataset_size=10)

my_ae.train()

my_ae.go()

More information: gpcam.lbl.gov

def instrument(data):
    for entry in data:
        entry["value"] = np.sin(np.linalg.norm(entry["position"]))
    return data

https://gpcam.lbl.gov/
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Questions? 

Marcus Michael Noack
MarcusNoack@lbl.gov
gpcam.lbl.gov
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