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❖ Precisely measure neutrino 
properties using a beam from 
Fermilab

❖ Detect neutrinos from 
galactic-core supernovae

❖ Search for nucleon decay
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� Located almost 1 
mile underground 

to reduce 
backgrounds from 

cosmic rays

❖ One 10 kTon detector has
3000 128-channel Front End Mother 
Boards
24000 FE ASICs, 24000 ADC ASICs,
6000 COLDATA ASICs
12000 1.28 Gbps links (9.2 Tbps of 
waveform data)

DUNE Far-End Detector

HUGE DATA

LArASIC ColdADC ColDATA

S. Miryala  et al, “CDP1: A  Data Concentrator Prototype for the DUNE” , IEEE TNS 20



CERN ATLAS Experiment

❖ 1 FEB2 mother board streams out ~225 
Gbps of data

❖ A total of 1524 FEB2 boards for entire 
(FCal) system, ~345 Tbps
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Future proton 
colliders will exceed 
these data rates

https://cds.cern.ch/record/2285582/files/ATLAS-TDR-027.pdf

ALFE2 CHIP

HUGE DATA

What are the basic building blocks of matter? 
What are the fundamental forces of nature? 
What is dark matter made of?

https://cds.cern.ch/record/2285582/files/ATLAS-TDR-027.pdf


Detector

Towards Edge Computing
❖ Edge computing

❖ Traditionally, data processing is mostly done outside of front-end 
ASICs using commercial FPGA/GPU/DSP/Neural_Chips 

❖ Introduce smartness by bringing processing inside with artificial 
neural networks could be the future for front-end ASICs

❖ Include more logic on the Front-End Electronics (FEE)
❖ Improve quality of signals, not just reduce the volume

❖ Immediate applications
❖ Waveform: Denoising, digital interpolating filters for processing of 

sampled waveform, e.g. improve energy resolution through digital 
peak finding in readout circuits

❖ Spatial Distribution: Enhancing of 2D or 3D spatial resolution and 
data reduction filtering, e.g. solving charge or light sharing 
problems in pixel detectors or PET scanners

❖ Data Concentrator: Event reconstruction
5



Conventional Readout System

❖ analog front end: charge sensitive preamplifier, shaping filter, peak detector, front end of 
ADC and/or TDC

❖ digital processing chain: ADC and/or TDC, digital signal processing (zero-suppression, 
encoding, transmission) 

❖ analog circuitry requires precise design and digital assistance needed for trimming its 
parameters only one sample (at peak) is processed to estimate energy deposited in sensor

❖ OnDemand A-to-D conversion, whereas high resolution ADC perform better if ran 
continuously 

❖ no possibility of increasing accuracy using averaging 
❖ Industrial trend:  to reduce analog strictly to front-end up to antialiasing filter of ADC
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Streaming ADC Based Readout

❖ continuous A-to-D conversion (waveform sampling)
❖  Digital Signal Processor (DSP) can perform fitting or 

interpolation leading to”
•  peak finding
•  time of arrival estimation

❖  Assuming ideal forms of pulses fitting can be very 
precise

❖  analytical fitting difficult on chip => FIR or Neural 
Network
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• real sensor current

• ideal and convolved 
response 



Nonidealities in signal response

❖ Can Neural Network 
“learn each channel 
signal shape” and do 
deconvolution in 
general case?
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Fitting may help, if 
analytical form is 
known

Where is the actual peak, or threshold crossing?
Ideal CR-RC2 shaping 
impulse response

Real circuit CR-RC2 
shaping impulse 
response



Machine Learning Algorithms
❖ Investigated two types of neural network for peak 

amplitude prediction
❖ Multi Layer Perceptron (MLP)
❖ Convolutional Neural Network (CNN)
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Fully connected 
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� How many layers? 
� How many neurons on each layer? 
� Compression of neural networks?
� Quantization of data variables?
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Ground Truth Data
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Sampled 
Waveform

Sensor 
Response

FEE(Amplifier + 
Shaper + ADC)

Modelled in 
Mathematica framework

Neural 
Network

Objective Estimate the peak amplitude

Data sets Sensor response (Practical)

Sampled Waveform Set
3400 points on each waveform
10000 waveforms
Data set split into 80% train, 10% validation, 
10% test



Inferencing Accuracy (MAE)

❖ Varied number of neurons 
on hidden layers

❖ Analysis is performed for 
sensor response

❖ Acceptable inferencing 
accuracy
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MLP Setting # of parameters MAE (Mean Absolute 
Error)

16-32-16 1521 0.0836098

32-64-32 5089 0.0611916

64-128-64 18369 0.0528343

128-256-128 69505 0.0516194

256-512-256 270081 0.0583198

S. Miryala  et al, “Waveform Analysis Using Machine Learning Algorithms on the Front-End Electronics” , iWorid, 2021



Quantization and Pruning
❖ Quantization of weights as 

4-bit, 6-bit and 8-bit fixed 
point instead of 32-bit floating 
bit numbers

❖ Pruning reduces the network
❖ Pruning with Quantitation 

Aware Training (PQAT) for 
efficient inferencing accuracy
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Evaluation of Quantization Aware Training



ASIC Design Methodology

❖ Design of Neural Network
❖ First, building and optimizing Neural 

Network model 
- tools available: Tensor Flow, 
PyTorch or Caffe2 frameworks

❖ Second, training of NN model to 
estimate kernel weights, in GPUs

❖ New tools and methodologies to 
bridge the conventional flow with 
python-based frameworks

❖ Quickly adapt to the changes in 
neural network

❖ Verification automation at various 
stages
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High Level Synthesis (HLS) tools for 
a neural processor design

❖ HLS4ML framework
❖ Generates C++ code for the neural network
❖ Reads in weights and bias from Qkeras 
❖ Supports only MLP and CNN

❖ Catapult 
❖ Maps C++ code to RTL (Verilog / VHDL)
❖ Also offers verification framework
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HLS4MLTensorflo
w/Qkeras

Intermediate 
format, Python 
to C++

Commercial 
HLS tool from 
Siemens
C/C++ to HDL

Open-source 
framework in 
the community

RTL 
Generation

Digital 
Design 
Flow



Preliminary RTL Results and 
Verification

❖ MAE Verification is performed at 
various level

❖ Good match (< 1%)
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C++ to HDL 

Develop ML 
Algorithms

Python to 
C++

QKeras

HLS4ML 

RTL for custom 
ASIC Design

Catapult 



AI ASICs for Radiation Environment

❖ TID tolerant digital design
• Performance degradation of devices over time
• Neural processor must be rad-hard
• New process corners are introduced

❖ SEE tolerant digital design
• Triple Modular Redundancy (TMR) on registers
• Protect all the configuration registers

16

Radiation Effects

Cumulative Effects Single Event 
Effects (SEE)

Total Ionizing Dose 
(TID)

Transient 
(SETs) Static (SEUs)

S. Miryala  et al, “Single Event Upset (SEU) Cross-Section Measurements of Sequential Elements with TMR in a 65nm process,” IEEE NSS, 2020
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AI ASICs for Cryogenic Detectors
❖ Commercial process design kits for 

ASIC design support from -40oC to 
125oC

❖ Cryogenic temp range from -185oC 
to -269oC are of interest for scientific 
applications

❖ CMOS device reliability is an issue 
due to Hot Carrier Injection (HCI)

❖ Custom SPICE model 
developments supporting cryogenic 
range

❖ Custom standard cell libraries and 
timing libraries

❖ Neural processors for cryogenic 
detectors must adapt  
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T. Chen et al., “CMOS reliability issues for emerging cryogenic 
Lunar electronics applications,” Solid State Electron., vol. 50, pp. 
959–963, Jun. 2006.

J. Hoff et.al., “Cryogenic Lifetime Studies of 130 nm and 
65 nm nMOS Transistors for High-Energy Physics 
Experiments”, TNS, 2015



Novel Devices - Memristors
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Fundamental 
circuit 
elements

Missing fourth element ?



Novel Devices - Memristors
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Advantages
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❖ CMOS compatible
❖ Memory benefits

• Dense
• Nonvolatile
• Fast
• Low power
• High endurance

❖ Rad-Hard
❖ Beyond Moore: Integrating 

memristors with standard logic

CMOS 
Layer

Memristor 
Layer

Gate Gate

Via 1

Via 2

Memristor

Memristor

Memristor

Metal 1

Metal 2

Metal 3

Metal 4

Metal 5

Metal 6

D DS S



I-V Characteristics and device modeling
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❖ Resistor with varying resistance, Low Resistive State (LRS), High Resistive 
State (HRS)
❖ Neuromorphic Computing, Memristor as a Synapse, Memristor as a 

Neuron
❖ Device models are essential for circuit simulations
❖ Identify commercial fab houses that can fabricate at wafer level

Response to a sinusoidal excitation

LRS

Vread
VsetVreset

HRS



Cross Bar Arrays and Simulations

22

❖ Reading and writing to 1st row 1st column

W11

W21

X1

X2

X3
W31

I1=X1W11

I2=X2W12

I3=X3W13

I
I = I1 + I2 + I3
I = X1W11 + X2W21 + X3W31

W11, W12, W13 are the conductance

SET RESET

Level Shifter

READ READ

V1

V1

V2

V2

V3
V3



Von-Neumann Architecture: Issues
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[A. Biswas  et al, JSSC’ 19]



In-Memory Computing
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❖ Multiply And Accumulate (MAC) 
implementation could be carried out 
either in Digital or Analog

❖ Improves the energy efficiency of the 
system by reducing the data transfer 
between the processor and memory 
unit.

❖ Improve the memory bandwidth 
because of multiple memory access for 
parallel processing.

N- Number of columns
W- filter weights
Va- analog voltage
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