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Short bio

● Studied physics at TU Vienna

● PhD in nuclear data evaluation 2015

● Postdoc at CEA Saclay (2015-2018) and 
Uppsala University (2018-2019)

● Since 2020 nuclear physicist in Nuclear 
Data Section at IAEA dealing with 
nuclear data library projects and code 
development
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Probabilities of various nuclear interactions 
involving the atomic nuclei, e.g., cross sections.

Relevant for:

● Reactor physics
● Radiation dosimetry
● Radiation protection
● Radioactive waste management
● Astrophysics
● Nuclear medicine
● Fusion research
● ...

Nuclear data

PSI Gantry 2 facility 

Palisades Nuclear 
Generating Stations

n

elastic

non-elastic

Target isotope

Joint European Torus
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Nuclear data evaluation
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Another perspective on the nuclear 
data evaluation process

Experimental facility Experimental facility

Nuclear model codes Database

Truth

Keywords: meta-analysis, sensor fusion, digital twins
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“Truth” - System of reactions
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“Truth” - System of reactions
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Experimental data

detector

background noise

Sample*
(thickness, density,
impurities)

*) Rights: Eckhard Pecher, http://creativecommons.org/licenses/by/2.5/ 

http://creativecommons.org/licenses/by/2.5/
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Bayesian statistics vs neural networks

… allows inference in sophisticated probabilistic models

… inference is a computational challenge (e.g., MCMC)

…  scale to huge datasets

…  are not that easily amenable to UQ

…  are composed of simple building blocks

Bayesian statistics … 

Neural networks … 
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Best of both worlds*

… use Bayesian inference

… build models by composing simple building blocks

Bayesian networks … 

… similar to how it is done for neural networks

* at least for nuclear data evaluation

Judea Pearl**

** Better Than Bacon – Judea Pearl at NIPS 2013

Thomas Bayes

Pierre-Simon Laplace
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Basic building block
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Versatile building block

Spline

Fourier Convolution

Gaussian process

Linear interpolation

Linearized nuclear model
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Bayesian inference

Posterior

Analytic update equations
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Bayesian inference

Posterior

Analytic update equations
(aka Generalized Least Squares (GLS))

sparse

SuiteSparse / CHOLMOD
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Composability – nested relationships

apply chain rule to get a compound Jacobian matrix

can be done automatically: “automatic differentiation”
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Framework flexible enough?

● Multivariate normal distribution

– Negative values are regarded possible

– Tails not heavy enough? Too symmetric?

● Linearity assumption

– Nuclear physics models are non-linear

– Many non-linear interactions between variables

Not flexible enough (yet)
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Non-linear relationships

● Permit non-linear relationships between nodes

● Embed GLS method in an iterative scheme* to obtain Maximum A 
Posteriori (MAP) estimate:

* aka (modified) Levenberg-Marquardt algorithm
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Non-linear relationships

● Permit non-linear relationships between nodes

● Embed GLS method in an iterative scheme* to obtain Maximum A 
Posteriori (MAP) estimate:

* aka (modified) Levenberg-Marquardt algorithm

Enhanced modeling possibilities:

- Other distribution functions, e.g., log-
normal distribution, via non-linear 
transformation

- Integration of more realistic 
relationships, e.g., non-linear physics 
model

Adaptive control parameter
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Nuclear data evaluation example
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Summary

● Bayesian inference + network = Bayesian network

● Composability can be a great accelerator in the design of 
probabilistic models

● Simple distribution assumption (MVN) in combination with non-
linear relationships yields a flexible yet tractable inference 
framework

● In the nuclear data evaluation context, we mostly deal with a 
system of functions linked by linear and non-linear relationships

● The future: link functions may be given by neural networks 
trained on lots of data if available

● Mathematical details and description of Bayesian network 
examples here:

G. Schnabel, R. Capote, A.J. Koning, D.A. Brown, “Nuclear 
data evaluation with Bayesian networks”,  arXiv:2110.10322

https://arxiv.org/abs/2110.10322
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