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Particle accelerators and their applications

Electron Accelerators Hadron accelerators

Proton accelerators

E-Beam sources Free electron lasers
(Electron sources for a (Highly tunable coherent
range of applications) photon sources ranging from

Cancer treatment IR to Hard X-Ray)
Polymer linking
Wastewater
treatment

High flux neutron sources (SNS)
Accelerator driven subcritical reactors
Basic research (fixed target and colliders)
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e Industrial research

lon accelerators
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(Tunable photon sources usually in the x-ray)

Basic research (nuclear physics)
Cancer treatment
Basic research (NSLS-II, APS) Isotope production

Materials science, biology, etc.
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See DOE Report “Accelerators for America’s Future”
(https://science.energy.gov/~/media/hep/pdf/accelerator-rd-stewardship/Report.pdf)

/A\ radiasoft NYSDS 2021 3/34



Overview of accelerator operations
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Machine learning applications for accelerators

Accelerator R+D Beam for Experimentalists Down Time

Tuning Surrogate Modeling Anomaly Detection
Neural Network

Neural Network Neural Network
+ Optimization + Optimization
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Machine learning applications for accelerators

Accelerator R+D

Beam for Experimentalists

Down Time

Tuning
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Neural Network
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Inverse models for tuning

* Direct use of inverse models for
tuning

* Train a model to predict settings from
desired diagnostic output

Artificial Neural Network

* A common application is beam steering

* Inputs are the requested BPM readings ) ) . . ‘ . ) a
* Outputs: Suggested corrector settings ggﬁ; — : : : : " 82;;:222
BPM; Correctors
0000 ___ |
| BPM,,_ . . . .  Corrector,,
Specified ‘ . ‘ . Corrector
Beam Orbit Settings
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Inverse models for tuning

* Direct use of inverse models for Artificial Neural Network
tuning 0000
* Train a model to predict settings from (BPM, | Q000 [ Corrector |
desired diagnostic output BPM, [~ Q000 —" | Corrector,
BPM; Correctors
* A common application is beam steering - ‘ . ‘ .
e \ e
* Inputs are the requested BPM readings | BPM,, ‘ . ‘ . | Correctory, |
* Outputs: Suggested corrector settings Specified ‘ . ‘ . Corrector
Beam Orbit Settings
: . . |
* Use inverse model as a starting point {
for optimization Initial Corrector
L. : Settings
* Speeds up switching between beamline l
configurations
\ .| Feedback or | Measured
Optimization Beam Orbit
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AGS to RHIC transfer line
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Beam steering with the AGS to RHIC transfer line

* Machine Learning (top)

. . -- X centroid

* Build inverse model of bpm- 51—~y centroid
1 . —-— t d
readings to corrector settings — ;Ejztz:d

 Make feed-forward correction

* Inverse models are fast and
effective

beam centroid [mm]

0 100 200 300 400 500 600
position [mm]
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Beam steering with the AGS to RHIC transfer line

* Machine Learning (top)

. . ---- X centroid
* Build inverse model of bpm- 21 -~y centroid
. . c —— x centroid
readings to corrector settings £ |l— v centroia
. °
* Make feed-forward correction ¢
T 0
* Inverse models are fast and c
. ©
effective -1
-2
. . 0 100 200 300 400 500 600
* Machine learning + position [mm]
optimization (bottom) oo
. C I . | . 24 — vy centroid
onnect accelerator simulation = | ____ § centroid
simulation to python £ y] - ycentroid
optimization tools using our 5
. o 01
O
middle layer :
 Use output of the neural &4
network as a starting point for 5]
a Nelder-Mead optimization 0 100 200 300 400 500 600

position [m]
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Machine learning for accelerator control

ML S d Initial Feedback final
uggeste
Inverse initial ’
Model settings
LIS phase
BC2 peak current .
-~ D02 Feedback + NN Final
gun L1X /
l , , XTCAV S 0
L1S L2-linac L3-linac \ w
/] 0.0
BClosomev BC243Gev  14GeV  undulator
-0.04

400 ) 400
time (1s)

Local
optimizer Local optimizer alone was unable to

converge = able to converge after
initial settings from neural network

A. Scheinker, A. Edelen, et al., PRL 121, 044801 (2018)
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Machine learning applications for accelerators

Accelerator R+D Beam for Experimentalists Down Time

Tuning Surrogate Modeling Anomaly Detection

Neural Network

Neural Network
+ Optimization

A J \ J \ S
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Neural networks for surrogate models

Slow Physics Simulations

High fidelity PIC + Particle Tracking Particle tracking with space charge Particle tracking with space
charge

750 keV Radio 116 MeV
Frequency Drift-Tube LINAC 400 MeV Coupled-
Quadrupole @201.25 MHz Cavity LINAC @805

MHz

35 keV H-
lon Source
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Neural networks for surrogate models

Slow Physics Simulations
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Neural networks for surrogate models

Slow Physics Simulations

High fidelity PIC + Particle Tracking Particle tracking with space charge Particle tracking with space
charge

750 keV Radio 116 MeV
Frequency Drift-Tube LINAC 400 MeV Coupled-
Quadrupole @201.25 MHz Cavity LINAC @805
MHz

|

|

|

|

|

| 35 keV H-
I lon Source
|

|

I

|

|

I

4 Tank similarities enables

Diagnostics and machine transfer learning Limited diagnostics and
time available machine time

Simulation based
surrogate model

Simulation based
surrogate model

Data driven surrogate

I
I
I model
|

Fast Executing Online Models
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Transfer learning enables portable solutions between accelerators

* Case Study: The Fermilab linac

 Neural networks trained on data from
DTL Tanks 2, 3,and 4 for |k epochs

* Model from tank 2 is trained on data from

tanks 3 and 4 for |k epochs

* Transfer learning trains faster and reaches a
better overall solution
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— initial training
0.4 —— continued training
—— transfer learning
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Machine learning for accelerator optimization

Generate ML Model using Sparse Random Sample

Test Case: Argonne Wakefield Accelerator Injector ( ST T—
sample of Physics Output beam
inputs Simulation parameters
slow-to-execute —
OPAL simulation (PIC) : NSGA-Il for optimization: e .
3D space charge 200 generations I:: ~ .;'fr :‘:;:?:1 +
3D field maps ~350 individuals P g ]
[ Surrogate Model I ‘ AlbLaEa ] ]
fast-to-execute
Input Variables Output Beam Parameters \ /
r A \ ~A |
K, K € v,z - N
¢ 1 2 ¢ 2 o Genetic Algorithm
XY,z (to optimize accelerator ->[ ML Model }
G 1 G settmgs)
v, \ \ / \ / \ \___
Cathode | | - e |00 e
e 111 0
Gun | | |
] Linac Cavit Genetic Algorithm )
?avtty I vity Beam [ (to optirgézttemtzcsc;elerator} ->[ SiFr’rrlmzngn ]
Solenoids Propagation : :
I I
-~ y,
A. Edelen, et al., PRAB 23, 044601 (2020)
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Machine learning for accelerator optimization

Test Case: Argonne Wakefield Accelerator Injector

Generate ML Model using Sparse Random Sample

OPAL simulation (PIC) : NSGA-II for opﬁmization: 100 - 5K random
3D space charge 200 generations oints for trainin
3D field maps ~350 individuals P g

~

Input Variables

Output Beam Parameters

Cathode

Gun
Cavity

Solenoids

U B
1 111

Linac Cavity

A. Edelen, et al., PRAB 23, 044601 (2020)
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Machine learning for accelerator optimization

In some cases, optimization over simulation takes too long to converge

160 —+— GA on Neural Network
. . —e— GA on Physics Simulation
> vdlidate Pareto front from neural network more directly 3 140 < Ground Truth
£
| 120
160 + —o— GA on Neural Network E 100
—e— GA on Physics Simulation &
S 140 - x  Ground Truth 801
o : : : : :
E 1.2 1.3 1.4 1.5 1.6
| 120 ~ 0s (mm)
E 204 ~=— GA on Neural Network
Verify points E 100 T s smen
through W =]
simulation 80 - £
[¢)
0.35 0.40 0.45 050 0.55 0.60 *
AE (MeV) 115 120 125 130

0s (mm)

Required 130x fewer simulations
and had 10® times faster
execution in the optimization

A. Edelen, et al., PRAB 23, 044601 (2020)
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Machine learning applications for accelerators

Accelerator R+D

Beam for Experimentalists

Down Time

Tuning

o
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Inverse models for diagnostics

* Inverse models as a diagnostic in a Actual Corrector
supervised fashion Settings
* Direct comparison between [Corrector; | ]
predicted settings and actual settings Correctory
informs operations of a potential Correctors
anomaly with that magnet
Corrector,, c
— - - ompare
Artificial Neural N rk ,
rtificial Neural Netwo . Predicted
"X X X | to Actuals
BPM, 000
BPM, "9 9 @@
BPM3
BPM,, | Q000 —
Measured . ’ . ’ Predicted
Beam Orbit Corrector Settings
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Inverse models for diagnostics

* Inverse models as a diagnostic in a Actual Corrector
supervised fashion Settings
* Direct comparison between [Corrector; | )
predicted settings and actual settings Correctors
informs operations of a potential Correctors
anomaly with that magnet o
orrector,,
- - ] Compare
Artificial Neural Network p
: . >— Predicted
* Inverse models as a diagnostic in 0000 o0 Actuals
an unsupervised fashion "BPM, 0000
 Assumptions BPM, \. "X X —
* model errors are caused by other BPM; Q000
beamline elements o >
BPM,,_ Q000 —
* each beam-line element will have a
unique error signature Measured 000 Predicted
Beam Orbit Corrector Settings

* Use this for tuning

/A radiasoft NYSDS 2021 23/34



AGS to RHIC transfer line
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AGS to RHIC transfer line study

Corrector;
Correctors
Correctors

Corrector,,

Quad,

| Quad,,
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AGS to RHIC transfer line study

* Two configurations were used: one where the initial
positions were also varied randomly and one where the

initial positions were not varied. oo e O:: . >
wpl_trim
* Right: Predicted corrector settings vs the ground truth T
for the validation set °1 s -
-1 1o ° -1 1%
* Black: without quadrupole errors -1 -1 0 1

Red: a single quadrupole error and random initial position errors

Blue: a single quadrupole error without initial position errors
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AGS to RHIC transfer line study

* Sensitivity of each corrector prediction to a
particular quadrupole
* Unique signatures for each quadrupole

* The model clearly identifies errors in these magnets
without any explicit knowledge of their existence

e Future work

* Use signatures to predict unknown quadrupole
errors

* Use model errors to tune out quadrupole errors

kickers

X0 -

yo 4
utv1 -
uth2 -
uth2pl 1
utv2p?2 -
uth3 -
utvs5 -
wpl _trim
wtv2 -
wth3 A
wth4 -
wth5 A

Witv6 1
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Detecting faulty magnet power supplies in the APS

* Can we predict if a fault will occur?

* If yes, can we predict which magnet will fault

* Components of interest
* 1320 magnet power supplies / 40 sectors (each has A (green) and B (blue) sections)

I Quadrupoles I Sextupoles Correctors

https://www.energy.gov/sites/prod/files/2019/04/f62/Advanced-Photon-Source-Upgrade-Project.pdf
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Reconstruction tests

* Reconstruct unknown data using an autoencoder

* Train and validate the autoencoder on known good datasets

¢ Test on unknown data (may be good or bad)
Measure the degree to which the autoencoder successfully reconstructs the unknown data

1 T .’E’l
To T To T
11888898888 | 2888898888 %5 .
ii.. O ii ] ii.. O §§ -
| Tn | Tn Ty,
Latent Space Latent Space
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Data collected by the APS over three years of operation

Reference data (blue): no fault occurs in vicinity, normal operations. Test data (orange): magnet
failure occurs; data is clipped and does not include final minutes prior to magnet fault.

input parameter

Time series data for 1320 magnets

Power supply cap temperature
Current
Magnet temperature

Data is aggregated by sector

Reference data (left) used for training and
validation

Test data (middle) with known anomalies
Histogram difference (right)

input parameter
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Machine learning for anomaly detection

* Reconstruct unknown data using an autoencoder
* Train and validate the autoencoder on known good datasets
* Test on unknown data (may be good or bad)

* Measure the degree to which the autoencoder successfully
reconstructs the unknown data

-561_ -50'1_
To To,
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§88°°°888 L
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Reconstruction of reference data and test data (by sector)

Region of convergence plot for the RMS error and squared error
evaluation metrics. The main plot shows the true positive rate vs
the false positive rate as a function of anomaly threshold. Inset a)
shows the true positive rate as a function of the error threshold

and inset b) shows the false positive rate as function of the error Number of faulty sectors for a given fault run. The data
threshold. Note that the threshold is normalized to the peak value are sorted by the number of faulty sectors identified in
of the reconstruction error computed on the reference data. the semisupervised case.
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Forecasting faults using unsupervised and semi-supervised learning

First indication of an anomaly as a function of the run time for the fault First indication of an anomaly as a function of the run time for the fault
data using the RMS error metric. Red is the data used to tune the data using the squared error metric. Red is the data used to tune the
detection threshold while blue is the final test data that is not used in detection threshold while blue is the final test data that is not used in
any of the training or parameter tuning.The dashed lines represent the any of the training or parameter tuning.The dashed lines represent the
unsupervised case while the solid line is the semisupervised case. unsupervised case while the solid line is the semisupervised case
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Conclusions

* Accelerator facilities rely heavily on human operators for tuning/control

* Modeling and control of these machines is challenging

* Nonlinear systems with large parameter spaces
Variety of diagnostics (e.g. beam images), but these are limited and number, and some are not continuously available

for use
* Time-varying/ non-stationary behavior

* Strong incentives for improving control (and understanding system)
* High user demand - want to switch between custom user requests quickly

* High cost for unintended down-time -> personnel time, user time, scientific output

* Achieve challenging beam setups for new science goals
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.
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