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Particle accelerators and their applications

Electron	Accelerators

Free	electron	lasers
(Highly	tunable	coherent	

photon	sources	ranging	from	
IR	to	Hard	X-Ray)

• Basic	research
• Directed	energy
• Industrial	research

Synchrotron	light	sources
(Tunable	photon	sources	usually	in	the	x-ray)

• Basic	research	(NSLS-II,	APS)
• Materials	science,	biology,	etc.

E-Beam	sources
(Electron	sources	for	a	
range	of	applications)

• Cancer	treatment
• Polymer	linking
• Wastewater	

treatment		

Hadron	accelerators

Ion	accelerators

• Basic	research	(nuclear	physics)
• Cancer	treatment
• Isotope	production

Proton	accelerators

• High	flux	neutron	sources	(SNS)
• Accelerator	driven	subcritical	reactors
• Basic	research	(fixed	target	and	colliders)
• Cancer	treatment
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See	DOE	Report	“Accelerators	for	America’s	Future”	
(https://science.energy.gov/~/media/hep/pdf/accelerator-rd-stewardship/Report.pdf)
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Overview of accelerator operations

Accelerator	R+D Beam	for	Experimentalists Down	Time

Specialized	R+D	Facilities

Machine	Development	Time Small	single	user	end	stations

Large	experimental	collaborations

Scheduled	Maintenance

Unscheduled	Maintenance
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Machine learning applications for accelerators

Accelerator	R+D Beam	for	Experimentalists Down	Time

Anomaly	DetectionSurrogate	ModelingTuning

Inverse	Models Neural	Network

Neural	Network	
+	Optimization

Neural	Network	
+	Optimization

Inverse	Models

Autoencoders
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Machine learning applications for accelerators

Accelerator	R+D Beam	for	Experimentalists Down	Time
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Inverse	Models

Neural	Network	
+	Optimization

Surrogate	Modeling

Neural	Network

Neural	Network	
+	Optimization

Anomaly	Detection

Inverse	Models

Autoencoders
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Inverse models for tuning

• Direct use of inverse models for 
tuning 
• Train a model to predict settings from 

desired diagnostic output 

• A common application is beam steering
• Inputs are the requested BPM readings 

• Outputs: Suggested corrector settings
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Inverse models for tuning

• Direct use of inverse models for 
tuning 
• Train a model to predict settings from 

desired diagnostic output 

• A common application is beam steering
• Inputs are the requested BPM readings 

• Outputs: Suggested corrector settings

• Use inverse model as a starting point 
for optimization
• Speeds up switching between beamline 

configurations
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AGS to RHIC transfer line



10/34NYSDS 2021

Beam steering with the AGS to RHIC transfer line

• Machine Learning (top)
• Build inverse model of bpm-

readings to corrector settings

• Make feed-forward correction

• Inverse models are fast and 
effective
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Beam steering with the AGS to RHIC transfer line

• Machine Learning (top)
• Build inverse model of bpm-

readings to corrector settings

• Make feed-forward correction

• Inverse models are fast and 
effective

• Machine learning + 
optimization (bottom)
• Connect accelerator simulation 

simulation to python 
optimization tools using our 
middle layer 

• Use output of the neural 
network as a starting point for 
a Nelder-Mead optimization 
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Machine learning for accelerator control
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Machine learning applications for accelerators
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Particle	tracking	with	space	
charge	

Neural networks for surrogate models

400	MeV	Coupled-
Cavity	LINAC	@805	

MHz

High	fidelity	PIC	+	Particle	Tracking

35	keV	H-
Ion	Source

750	keV	Radio	
Frequency	
Quadrupole

Particle	tracking	with	space	charge	

116	MeV	
Drift-Tube	LINAC	
@201.25	MHz

Tank	1 Tank	2 Tank	3 Tank	4 Tank	5

Slow	Physics	Simulations
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Particle	tracking	with	space	
charge	

Neural networks for surrogate models
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Frequency	
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@201.25	MHz
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Diagnostics	and	machine	
time	available

Limited	diagnostics	and	
machine	time

Limited	diagnostics	and	
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Slow	Physics	Simulations
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Particle	tracking	with	space	
charge	

Neural networks for surrogate models

400	MeV	Coupled-
Cavity	LINAC	@805	

MHz

High	fidelity	PIC	+	Particle	Tracking

35	keV	H-
Ion	Source

750	keV	Radio	
Frequency	
Quadrupole

Particle	tracking	with	space	charge	

116	MeV	
Drift-Tube	LINAC	
@201.25	MHz

Tank	1 Tank	2 Tank	3 Tank	4 Tank	5

Diagnostics	and	machine	
time	available

Data	driven	surrogate	
model

Simulation	based	
surrogate	model

Limited	diagnostics	and	
machine	time

Limited	diagnostics	and	
machine	time

Simulation	based	
surrogate	model

Tank	similarities	enables	
transfer	learning

Slow	Physics	Simulations

Fast	Executing	Online	Models
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Transfer learning enables portable solutions between accelerators

• Case Study: The Fermilab linac
• Neural networks trained on data from 

DTL Tanks 2, 3, and 4 for 1k epochs
• Model from tank 2 is trained on data from 

tanks 3 and 4 for 1k epochs
• Transfer learning trains faster and reaches a 

better overall solution
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Machine learning for accelerator optimization
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Machine learning for accelerator optimization
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Machine learning for accelerator optimization
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Machine learning applications for accelerators

Accelerator	R+D Beam	for	Experimentalists Down	Time

Anomaly	DetectionSurrogate	Modeling

Neural	Network

Neural	Network	
+	Optimization

Inverse	Models

Autoencoders

Tuning

Inverse	Models

Neural	Network	
+	Optimization
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Inverse models for diagnostics

• Inverse models as a diagnostic in a 
supervised fashion
• Direct comparison between 

predicted settings and actual settings 
informs operations of a potential 
anomaly with that magnet
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Inverse models for diagnostics

• Inverse models as a diagnostic in a 
supervised fashion
• Direct comparison between 

predicted settings and actual settings 
informs operations of a potential 
anomaly with that magnet

• Inverse models as a diagnostic in
an unsupervised fashion
• Assumptions

• model errors are caused by other 
beamline elements 

• each beam-line element will have a 
unique error signature 

• Use this for tuning
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AGS to RHIC transfer line
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AGS to RHIC transfer line study
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AGS to RHIC transfer line study

• Two configurations were used: one where the initial 
positions were also varied randomly and one where the 
initial positions were not varied. 

• Right:  Predicted corrector settings vs the ground truth 
for the validation set 
• Black: without quadrupole errors

• Red: a single quadrupole error and random initial position errors 

• Blue: a single quadrupole error without initial position errors
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AGS to RHIC transfer line study

• Sensitivity of each corrector prediction to a 
particular quadrupole 
• Unique signatures for each quadrupole 

• The model clearly identifies errors in these magnets 
without any explicit knowledge of their existence

• Future work
• Use signatures to predict unknown quadrupole 

errors

• Use model errors to tune out quadrupole errors
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Detecting faulty magnet power supplies in the APS

• Can we predict if a fault will occur? 
• If yes, can we predict which magnet will fault 

• Components of interest 
• 1320 magnet power supplies / 40 sectors (each has A (green) and B (blue) sections)

https://www.energy.gov/sites/prod/files/2019/04/f62/Advanced-Photon-Source-Upgrade-Project.pdf

Quadrupoles Sextupoles Correctors
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Reconstruction tests

• Reconstruct unknown data using an autoencoder
• Train and validate the autoencoder on known good datasets 

• Test on unknown data (may be good or bad)

• Measure the degree to which the autoencoder successfully reconstructs the unknown data
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Data collected by the APS over three years of operation
• Time series data for 1320 magnets 

• Power supply cap temperature 
• Current 
• Magnet temperature 

• Data is aggregated by sector
• Reference data (left) used for training and 

validation 
• Test data (middle) with known anomalies
• Histogram difference (right) 

Reference	data	(blue):	no	fault	occurs	in	vicinity,	normal	operations.	Test	data	(orange):	magnet	
failure	occurs;	data	is	clipped	and	does	not	include	final	minutes	prior	to	magnet	fault.
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Machine learning for anomaly detection

• Reconstruct unknown data using an autoencoder
• Train and validate the autoencoder on known good datasets 

• Test on unknown data (may be good or bad)

• Measure the degree to which the autoencoder successfully 
reconstructs the unknown data
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Reconstruction of reference data and test data (by sector)

Number	of	faulty	sectors	for	a	given	fault	run.	The	data	
are	sorted	by	the	number	of	faulty	sectors	identified	in	
the	semisupervised case.	

Region	of	convergence	plot	for	the	RMS	error	and	squared	error	
evaluation	metrics.	The	main	plot	shows	the	true	positive	rate	vs	
the	false	positive	rate	as	a	function	of	anomaly	threshold.	Inset	a)	
shows	the	true	positive	rate	as	a	function	of	the	error	threshold	
and	inset	b)	shows	the	false	positive	rate	as	function	of	the	error	
threshold.	Note	that	the	threshold	is	normalized	to	the	peak	value	
of	the	reconstruction	error	computed	on	the	reference	data.	
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Forecasting faults using unsupervised and semi-supervised learning
First indication of an anomaly as a function of the run time for the fault 
data using the RMS error metric. Red is the data used to tune the 
detection threshold while blue is the final test data that is not used in 
any of the training or parameter tuning. The dashed lines represent the 
unsupervised case while the solid line is the semisupervised case. 

First indication of an anomaly as a function of the run time for the fault 
data using the squared error metric. Red is the data used to tune the 
detection threshold while blue is the final test data that is not used in 
any of the training or parameter tuning. The dashed lines represent the 
unsupervised case while the solid line is the semisupervised case 
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Conclusions

• Accelerator facilities rely heavily on human operators for tuning/control

• Modeling and control of these machines is challenging
• Nonlinear systems with large parameter spaces

• Variety of diagnostics (e.g. beam images), but these are limited and number, and some are not continuously available 
for use 

• Time-varying/ non-stationary behavior

• Strong incentives for improving control (and understanding system)
• High user demand → want to switch between custom user requests quickly

• High cost for unintended down-time → personnel time, user time, scientific output

• Achieve challenging beam setups for new science goals
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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.


