Small box modelling using PDFGui

Emil S. Bozin Brookhaven National Laboratory

NSLS-II PDF School 2018 Brookhaven National Lab, 17-19 September 2018

September 18, 2018

Outline

- Introductory notes on PDF approach
- On small box modelling in general and PDFgui in particular
- PDFgui parameters, concepts, and layout
- Agenda for hands-on part and examples to be covered

PDF approach

Choosing the right tool for the problem

PDF approach

• Non crystalline materials (liquids, amorphous solids, polymers)

Nanoscale materials

 Disordered crystalline systems with nanoscale heterogeneities

molecule

S.J.L. Billinge and I. Levin, **The Problem with Determining Atomic Structure at the Nanoscale**, *Science* **316**, 561 (2007).

crystal

PDF approach

 Considering scattering contrast

Considering absorption

1 Н 40 1009 Мійли в 40 1009 Колон в 40 1009 10 10 11 12 10 Na Mg 22.900 24.950 22.800 20.974 20.056 11 15 16 0.5414 0.007 20.985 13 14 15 16 17 1 All Si P S. 0.5414 0.500 2.997 20.055 S.C.1 All Si P S. C.1 All Si P S. S.1.5 9.543440 Cideminum 10.041 12.055 S.4.53	e 8
H H 10079 1 31 4 5 6 7 8 9 1 5 6 7 8 9 1 641 00122 10011 14.007 15.099 10.007 50darn nogsestim 11 12 12 10.011 14.007 15.099 10.008 20.001 20.001 20.015 16 differe 20.001 20.011 14.007 11 12 Na Mg 20.001 20.001 30.011 16 differe 20.001 20.012 20.001 30.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012 20.001 20.012	e 26 -> e 20 ->
10000 Billium caton ritiogen Softan oxygen Distribut Huisting Distribut	e 80 80 80 80 80 80 80 80 80 80 80 80 80
thism borging attraction attractraction attractractin attractr	
3 4 Li Be B C 7 8 9 1 Solar 10 11 0122 solar 12 12 1 10012 10017 15099 18.098 20.001 20.001 20.001 20.001 20.001 20.001 3.0017 11 12 13 14 16 3.0017 11 12 13 14 15 9 S. CI A Na Mg 22.000 24.056 3.0017 20.055 20.001 20.011 20.012 20.055 20.011 20.012 20.055 20.011	
Li Be C N O F N 6.641 9.0122 10.611 12.011 14.007 15.099 10.811 12.011 14.007 15.099 10.811 12.011 14.007 15.099 10.811 10.811 12.011 14.007 15.099 10.811 10.811 15.017 11.017 11.017 11.017 11.017 11.017 11.017 11.017 11.017 11.017 11.011 <t< td=""><td>e ³⁰ r</td></t<>	e ³⁰ r
6.941 9.0122 10.811 12.011 14.007 15.999 18.088 20. 5.04mm magnesium 11 12 11 12 11 12 11 12 11 14 15 16 17 1 11 12 12 13 14 15 16 17 1 22.907 24.367 20.074 20.065 30.074 32.065 35.453 39. Foldsalum calcum total indext magnesse indext magnesse indext magnesse indext magnesse 20.982 20.092 20.096 30.074 32.065 35.453 39. Construint calcum titatium vanadum chronium magnesse indext copper 20.092 20.093 32.055 35.453 39.	so xn r
Solari nagyesum 11 12 Na Mg 22.000 24.056 Sourclum titonium variadum chromium nargonose iron osbatt nickel oceper zine gallum semantum areade solariti sickel oceper zine gallum semantum areade solariti solarit	r
The first of the f	rl
Na Mg 22.960 24.965 possulari cicadam searchun titutum vatadum chronium mancinesse inn ostatt nidesi opper zine gallum germanum arsonic selenum tromine kry	r I
22.960 24.965 potasium cataium sangunese iron onbalt nickei copper zine gallium germanium arsonic selenium teronium nangunese iron onbalt nickei copper zine gallium germanium arsonic selenium teronine kny	
potasium cacium secandum titanum vandum chronium manganese incn onbalit nickel occeper zinc gallum germanium arsenic selenium teronine key	48
	ion
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 3	5
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br K	r
<u>39.098</u> 40.078 44.966 47.867 50.942 51.996 54.938 55.845 58.933 58.693 63.546 65.39 69.723 72.61 74.922 78.96 79.904 83	\$Ö
nuclear stronum yttrium zroonum nobum moybelsnum tertensium nuteenum modum patibilium silver calmium indum tin anternony terunum iodine see 27 , 29 , 40 , 41 , 42 , 42 , 44 , 45 , 46 , 47 , 49 , 40 , 50 , 51 , 52 , 52 , 52 , 52 , 53	on l
	' I
RD Sr Y Zr ND MO IC RU Rh Pd Ag Cd In Sn SD Ie I X	e I
85,468 87,62 88,996 91,224 92,996 95,54 1981 101,67 102,91 106,42 107,87 112,41 114,82 118,71 121,76 127,60 126,90 133	29
caesium barium lutetium hafnium tantatum lungsten rhenium osmium iridium platinum gold mercury thallium lead bismuth polonium astatine rax	>n
55 56 57-70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 8	;
Cs Ba * Lu Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At R	n
<u>132.91</u> <u>137.33</u> <u>174.97</u> <u>178.49</u> <u>180.95</u> <u>183.84</u> <u>186.21</u> <u>190.23</u> <u>192.22</u> <u>195.68</u> <u>196.97</u> <u>200.59</u> <u>204.38</u> <u>207.2</u> <u>206.98</u> <u>[209]</u> <u>[210]</u> <u>[210]</u>	2]
trancium radium uteriordium dubnium seaborgium bohrum hassium metimenium ununnium unundium unundium unundium	
87 88 89-102 103 104 105 100 107 108 109 110 111 112 114	
Fr Ra * * Lr Rf Db Sg Bh Hs Mt Uun Uuu Uub Uuq	
[223] [226] [261] [262] [266] [266] [266] [266] [266] [271] [277] [277]	

Considering isotopes and resonances
 Fe ca s si Al Mg O D H
 X-Rays
 Neutrons
 Neutrons

PDF recap

PDFgui – awareness of various effects

Some effects that should be accounted for

- Thermal broadening
- Correlated motion of nearest neighbours
- Finite Q_{MAX} (truncation)
- Limited Q-space resolution
- Particle size

PDF: effect of thermal broadening

Effect of thermal motion U_{iso} on PDF (thermal displacement parameters)

PDF: effect of correlated atomic motion

15

PDF: effect of correlated atomic motion

PDF: correlated atomic motion outlaws

Weak effects (e.g. PbTe)

break the rule

Strong effects (e.g. in CeCoIn₅)

difficult to model

2

PDF: effect of finite Q_{max} (truncation)

Effects from finite Q-range

- ideal F(Q) is multiplied by a step function
- G(r) gets convoluted with a sinc function $\operatorname{sinc}(r) = \operatorname{sin}(Q_{\max}r) / r \rightarrow r$ -resolution $\approx \pi/Q_{\max}$
- good *r*-resolution of G requires large Q_{max} Q = $4\pi \sin \theta / \lambda \rightarrow$ best results with TOF neutrons or high-energy x-rays

NATIONAL LABORATORY

PDF: effect of the Q-space resolution

Effect of limited Q-resolution on PDF data

- ideal F(Q) is convoluted by Gaussian to simulate finite Q resolution
- *G(r)* gets multiplied by real-space Gaussian with reciprocal width
- For G(r) to have good r-range high resolution in Q is required

Q-resolution defines PDF "field of view"

PDF: effect of the Q-space resolution

PDF: effect of the finite particle size – nano vs bulk

K.L. Page et al., Chem. Phys. Lett. 393, 385 (2004).

Now that you have collected your X-ray or neutron data and reduced it to PDF, what is the next step?

- It's time to harvest the information from PDF data, of course!
- Which approach to use depends on the problem at hand
- Good starting point (always) is to observe the PDF data in a model independent way, followed by modelling using the available tools, some of which are presented in this school
- Data inspection could provide valuable clues that would help modelling efforts/strategies tremendously at times

PDF data modeling

Small Models: Least Squares Refinement

Up to several hundreds of atoms 'Rietveld'-type parameters: *lattice parameters, atomic positions, displacement parameters, etc.*

Refinements as function of *r*-range

Large Model: Reverse Monte Carlo

20000 + atoms Fit X-ray and neutron F(Q), G(r), Bragg profile Constraints utilized Static 3-D model of the structure (a snap-shot)

Multi-level /Complex Modeling

Refine higher level parameters (not each atom) Example nanoparticle: *diameter, layer spacing, stacking fault probability* Choose minimization scheme

Emerging: *ab initio* and force-field based approaches

Density Functional Theory Molecular Dynamics

NATIONAL LABORATORY

statif(Mar)

"Small Box" software comparison

TOPAS PDF

- Commercial
- Steeper learning curve
- Have to write your own macro
- + Super Fast
- + Easy manipulation of fitting parameters and plotting
- + Can easily customize output functions

http://www.topas-academic.net

slide courtesy Katharine Page

PDFgui <u>http://www.diffpy.org/</u>

- Slow refinement, e.g. for high-r
- Cumbersome outputs
- + Open Source and Free
- + GUI is Simple and User-friendly

Small box PDF modeling approach

- Small box: assumption of periodic boundary conditions (P1)
- Relatively small number of atoms (up to several hundred)

- Built-in symmetry constraints with symmetry equal or usually lower than the average crystal symmetry
- Involves least squares refinement over selected *r*-range (typically up to a few unit cells, translational symmetry not necessarily important as the box size mostly provides "metrics")

Thigs needed

- PDF data (sample.gr files) and associated information such as Q_{max} used, range of data, type of radiation, sample chemistry,
- In small box modelling approach, one typically starts from a refinement of a known/suspect structure, (thus reducing the volume of the parameter space as much as possible)
 - High-*r* region ~average structure
 - Low-r region ~local structure

(biased view with bulk materials in mind)

Starting structure information

- space group and lattice parameters
- fractional coordinates (asymmetric unit cell) & occupancies
- having site-multiplicities handy may be helpful for crosschecking (e.g. PDFgui works with symmetrized cells)
- Having an origin choice handy, if multiple are available,
 could matter

PDF modeling

• PDF is simulated from a known structure model

$$G_{calc}(r) = \frac{1}{Nr\langle b\rangle^2} \sum_{i\neq j} b_i b_j \frac{1}{\sqrt{2\pi}\sigma_{ij}} \exp\left[-\frac{(r-r_{ij})^2}{2\sigma_{ij}^2}\right] - 4\pi r\rho_0$$

- structure model is parameterized by a set of parameters p_i
- residuum R_w difference between observed and simulated PDF

$$R_w(p_1, p_2, \ldots) = \sqrt{\frac{\sum_n [G_{obs}(r_n) - G_{calc}(r_n)]^2}{\sum_n G_{obs}^2(r_n)}}$$

- least-squares refinement of p_i to minimize R_w
- Effects from setup (such as finite Q-resolution) or sample (correlated NNmotion) accounted for

$$B(r) = e^{-\frac{(rQ_{damp})^2}{2}} \qquad \qquad \sigma_{ij} = \sigma'_{ij} \sqrt{1 - \frac{\delta_1}{r_{ij}} - \frac{\delta_2}{r_{ij}^2} + Q_{broad}^2 r_{ij}^2}$$

PDFgui overview

- PDFgui is a graphical interface built on the PDFfit2 engine, which is a program as well as a library for real-space refinement of crystal structures based on the atomic pair distribution function (PDF) method.
- PDFgui organizes fits and simplifies many data analysis tasks, such as configuring and plotting multiple fits, adding functionality to script driven PDFfit2.
- PDFfit2 is capable of fitting a theoretical three dimensional structure to atomic pair distribution function data and is well suited for nanoscale investigations.
- The fit system accounts for lattice constants, atomic positions and anisotropic atomic displacement parameters, correlated atomic motion, as well as various experimental factors that may affect the data.
- The atomic positions and thermal coefficients can be constrained to follow symmetry requirements of an arbitrary space group. Limited restraints supported.
- The PDFfit2 engine is written in C++ and accessible via Python, and can also be prompt operated.

PDFgui overview

	- 1					
	CdSe	-nano.ddp	(~/tuto	rial/examples/CdSe	-nano.ddp) - PDFgui	
<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s	<u>P</u> hases	s <u>D</u> ata Ca	<u>l</u> culation	s <u>H</u> elp		
🕑 📄 🖬 💊	0					
Fit Tree	×	Parameters	Results			
▽ 🔣 CdSe-bulk	- 1	Initia	Fixed	Refined		
🛱 CdSe-wurtzi	te.stru	1 4 2		4 202215806		
CdSe-bulk.g	r	1 4.5	<u>Ľ</u>	4.302215896		
CdSe-3nm		2 7.01		7.00611078546		
CdSe-wurtzi	te.stru 📗	11 0.375		0.373083000599		
CdS 🕑			110	upoj cupe plilligh:		
				CdSe-3nm.gr:C	6	
	03	1 1	1		Cdiff	
	0.0				- Gcalc	
	0.2 -		A			
		a 🔈	ġ	<u>ê</u>		
4 <i>11</i>	0.1 - 💧	A N		AA 88. AA		
Plot Control		h N	Λ			
X0	0.0 -		11	m/mm		
step	-0.1		V			
Υ	-0.1F	V	8	8	1	
@1	-0.2					
@2			6			
@11	-0.3 -					
@21						
@100	2	20 22	24	26 28 r	30 32 34	
@150	-					
@200	9 🔘	+ 🗐	8	ڬ 🔏 🛛 🗙 x =	35.3005, y = 0.246248	parameters
rw		PDFfit2 Output	:			×
		cnisq.: 1	.64294	e+u/ rea.cnisq.	: 3818.13 KW: 0.328246	^
offset -5						
						8
Plot Res	iet			111		V

PDFgui

- GUI interface to PDFfit2 is user friendly modelling environment that can be used for quick simulations (useful for experiment planning and sensitivity tests)
- can **organize** multiple related fits in a single project file (.ddp file) easily shareable with colleagues
- powerful visualization facilities
 - live plotting of refined PDF profiles
 - parametric plots of variables from multiple fits
 - 3D structure visualization (optional)
- structure model manipulation
 - supports xyz, PDF, CIF and PDFfit formats
 - supercell expansion
 - expansion of asymmetric unit
 - generation of symmetry constraints for coordinates and atomic displacement factors, ADPs ("thermals")
- **wizards** for T-series, doping-series, r-series (smart extraction of meta-data from files)

Easy set up for "on the fly" refinements of incoming data helps making experimental decisions

PDFgui parameters associated with DATASET

Fit range (r_{MIN}, r_{MAX}) fixed in refinement

Q_{max} fixed in refinement

Q_{damp} refined for calibrant fixed for sample

Q_{broad} refined for calibrant fixed for sample

dscale refined user selected refinement r-range

upper limit of integration used in Fourier transform defines r-space resolution, predetermined

Gaussian dampening (due to limited Q-resolution)

High-*r* peak broadening (due to increased refined intensity noise at high Q and other sources, only significant r_{MAX} is large

scale factor associated with dataset

PDFgui parameters associated with PHASE

pscale refined	phase scale factor NOTE: could be redundant/correlated with dscale
a, b, c, α, β, γ refined	lattice parameters
x[n] y[n] z[n] occ[n] u[16,n] refined (per symmetry)	x-position (fractional coordinates) y-position z-position site occupancy anisotropic displacement parameters U _{ij} [Å ⁻²]

NOTE: Refinement parameters can be correlated, particularly when a model is refined over a narrow r-range of data. PDFgui reports on correlations > |0.8|

PDFgui parameters associated with PHASE for correlated atomic motion

material, they are very strongly correlated and affect other parameters

$$\sigma_{ij} = \sigma'_{ij} \sqrt{1 - \frac{\delta_1}{r_{ij}} - \frac{\delta_2}{r_{ij}^2} + Q_{broad}^2 r_{ij}^2}$$

PDFgui parameters for nanoparticles

PDFgui declarations associated with PHASE

X declaration

atom type associated with given site (all sites) e.g. Ni/Ta/Ca (label used to read scattering info from lookup tables of b_{coh} and Z).

PDFgui declarations associated with DATASET

Neutron/X-rayscatterer typedeclaration(used to determine lookup table)

NOTE: In rare instances one may experience the following In case of X-ray radiation Z_X is used for element X. If ions present one can change X from original element to a fellow element with adequate electron count.

In case of neutron radiation b_{cohX} is used for element X. Lookup table contains information per natural isotope abundance. If isotope substitution is present, lookup table has to be modified with adequate *b* specified for a dummy element with made-up alphabetical code that will then be declared in the phase using that alphabetical code.

Parameters are assigned using the syntax **@pn**, where **pn** is the parameter number.

For example, @1, @55, @321, etc, numbers do not have to be consecutive.

Variables that are assigned the same parameter number will be described by the same parameter.

Caution should be exercised to avoid unintentional assignment of the same parameter number to incompatible variables (variables of different type)

PDFgui: quick start

PDFgui: Layout

The layout can be somewhat customized to create comfortable work environment

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> h	nases	<u>D</u> at	a Ca <u>l</u> o	culat	ions	<u>H</u> el	p M	en	<u>u B</u>	lar	•					
<u> </u>	8		То	o	B	la	r									
Fit Tree	×	Con	figure	Cor	nstrai	nts	Results				Ta	abs	s to	о р	an	es
🛱 ni.stru		Ρ	has	e	Co	nfi	iguı	rati	on							
			а 3.5	52		b	3.52			c 3.5	2					
FILITEE		alp	ha 90	.0]	beta	90.0]	gamm	a (90.	0					
		Sc	ale Fact	tor	1.0											
Plot Control	×		delt	al (0.0		delta	a2 0.0		spdi	amete	er [0.0)			
X	5		sra	tio	1.0		rc	ut 0.0			stepcı	ut 0.0)			
v		Inc	luded F	Pairs	all	all										
			elem	x	У	z	u11	u22	u33	u12	u13	u23	occ			
		1	Ni	0.0	0.0	0.0	0.003	0.003	0.003	0.0	0.0	0.0	1.0			
		2	Ni	0.0	0.5	0.5	0.003	0.003	0.003	0.0	0.0	0.0	1.0			
Plot Contr		3	Ni	0.5	0.0	0.5	0.003	0.003	0.003	0.0	0.0	0.0	1.0			
		-														
				(Cu	rr	en	t A	cti	on						
offset -5																
Plot Reset																
PDFfit2 Output																×
					P) F	fit2	2 0)uti	pu	t					

nslas-II

Appearance of a PDFgui window after a PDF dataset is loaded.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> hases	<u>D</u> ata Ca <u>l</u> culations <u>H</u> elp
Fit Tree X	Configure Constraints Results
Ni-xray.gr	Scatterer Type O Neutron X-ray
	Data Sampling ● Data ○ Nyquist ○ Custom
Plot Control X	Data Range 0.01 to 20.0 spacing 0.01
step 🗸	Fit Range 0.01 to 20.0 spacing 0.01
Y	Scale Factor 1.0 Qmax 40.0
Gcalc	Qdamp 0.001 Qbroad 0.0
Gdiff	Temperature 300.0 Doping 0.0
Gobs	
crw	
dGcalc	
offset -5	
Plot Reset	
PDFfit2 Output	×

nslas-II

Adjusting data set related configuration.

<u>F</u> ile <u>E</u> dit <u>∨</u> iew Fi <u>t</u> s <u>P</u> hases	Data Calculations Help
S S S	
Fit Tree X	Configure Constraints Results Data Set Configuration Scatterer Type Neutron X-ray Data Sampling Data O Nyquist O Custom
Plot Control × Step ✓ Y Gcalc Gdiff Gobs Gtrunc crw dGcalc offset -5 Plot	Data Range 0.01 to 20.0 spacing 0.01 Fit Range 1.7 to 20.0 spacing 0.01 Scale Factor 1.0 Qmax 40.0 Qdamp 0.08 Qbroad 0.0 Temperature 300.0 Doping 0.0
PDFfit2 Output	×

nslas-II

BROOKHAVEN

Setting up the refinement parameters and constraints: experimental parameters

Rt Tree Image: Second S	<u>F</u> ile <u>E</u> dit <u>∨</u> iew Fi <u>t</u> s <u>P</u> hases	<u>D</u> ata Ca <u>l</u> culations <u>H</u> elp
Ht Tree Image: Strain in the second s	S 😣 💁 😣	
PDFfit2 Output ×	Fit Tree ▼ Fit 1 Image: Streed streng stre	Configure Constraints Data Set Constraints Scale Factor (0) Qdamp (0) Qbroad
		^

15L_S-1

Setting up the refinement parameters and constraints: model structure

<u>F</u> ile	<u>E</u> dit	<u>∨</u> iew	Fi <u>t</u> s	<u>P</u> hases	<u>D</u> at	ta Ca	lcula	tion	s <u>H</u> e	lp									
<u>_</u>			0	\otimes															
Fit Tree	e 🛃 Fit J	_		×	Cor	nfigure	6	nstr	aints	Resu	lts								
		li.stru li-xray	gr		P	ha	se	C	ons	stra	aint	s				_			
							ý3			b @3			с	@3					
					a	pna		_	Det	a		ga	mma						
Plot Co -X	ontrol			×	So	ale Fa: de sr	ctor lta1 atio			de	lta2 (spdiar	meter		 \$		
step)				In	cluded	Pairs	a	ill-all								 	 	
						elen	ı x	y z	2 u11	u22	u33	u12	u13	u23	occ				
					1	Ni		1	@4 @4	@4 @4	@4 @4					-			
					3	Ni		$\left(\right)$	@4	@4	@4)				-			
					4	Ni			@4	@4	@4								
offset	-5																		
P	lot		Rese	et															
PDFfit2	2 Outpu	ıt																	×

BROOKHAVEN

Reviewing the fit parameters and conditions

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> hases	<u>D</u> ata Ca <u>l</u> culations <u>H</u> elp	
S 😒 🔄 😒		
Fit Tree Image: Stress Stre	Parameters Results Initial Fixed Refined 1 1.0	
Plot Control × step v Y @1 @2 @3 @4 rw		
offset -5 Plot Reset PDFfit2 Output	Apply parar	neters ×

151 S-I

BROOKHAVEN

The refinement progress is displayed in the PDFfit2 Output panel.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> hases	Data Ca <u>l</u> culations <u>H</u> elp	
<u></u>	ALI)	
Fit Tree X	Parameters Results	
🛱 Ni.stru	Initial Fixed Refined	
🛄 Ni-xray.gr	1 1.0 0.7605115324	
	2 0.08 0.068831864865	
	3 3.52 3.53161588341	
	4 0.0025 0.00512432502226	
Plot Control X		
X		
step 🗸		
Υ		
@1		
@2		
@3		
@4		₿ B
TW		
offset -5		
Plot Reset		Apply parameters
PDFfit2 Output		×
chisg.: 236.817 red.ch:	isg.: 0.129479 Rw: 0.0973844	<u>^</u>
		~

150_5-II

Updating the set of initial values of refined parameters.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> hases <u>D</u> ata Calculations <u>H</u> elp
Fit Tree X Parameters Results
Mi.stru Initial Fixed Renned
Ni-xray.gr 1 1.0 0.7605115324
2 0.08 0.068831864865
3 3.52 3.53161588341 Copy Refined To Initial
Rename Parameters
Plot Control ×
X
step 🗸
@1
@2
@3
offset -5
Plot Reset Apply parameters
PDFfit2 Output ×
chisq.: 236.817 red.chisq.: 0.129479 Rw: 0.0973844

15LS-1

An example of PDFgui plotting capabilities: displaying a fit.

An example of PDFgui plotting capabilities: displaying a parameter.

Using "Journal" facility can be a convenient way for taking notes.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> hases <u>D</u> ata Ca <u>l</u> culations <u>H</u> elp	
Fit Tree X Parameters Results	
Fit 1 Project Journal	
Ni-xray.gr	
Plot Control	
×	
step	
Υ	
@1 @2	
@3	
Export 🔀 Close	
offset 3	
Apply paramete	
PDFfit2 Output	×
chisq.: 236.817 red.chisq.: 0.129479 Rw: 0.0973844	
	~

15LS-1

Building structure model using crystal symmetry

Expanding the unit cell using space group information.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> hases <u>D</u> a	ata Ca <u>l</u> culations <u>H</u> elp
<u> </u>	
Fit Tree × Con	nfigure Constraints Results
	-nase Configuration
	a 3.52 b 3.52 c 3.52
al	lpha 90.0 beta 90.0 gamma 90.0
Plot Control X -X step V -Y offset 3 Plot Reset PDFfit2 Output	Space Group Expansion Latom selected. Expanding to 4 positions. Space Group Fm-3m Origin Offset 0.0 0.0 0.0 Cancel COK 1.0 X

Building structure model using crystal symmetry

Setting up symmetry constraints to be used in a refinement.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> hases <u>D</u> ata Ca <u>l</u> culations <u>H</u> elp		
Fit Tree X Configure Constraints Results		
Phase Constraints		
Space Group Constraints		
Plot Control X 4 atoms selected.		
step Space Group Fm-3m		
Y Origin Offset 0.0 0.0		
☑ constrain positions		
✓ constrain temperature factors		
<u>Cancel</u>		
offset 3		
Plot Reset		
PDFfit2 Output		

Calculating PDF from a structure

An example of the calculation configuration panel.

<u>F</u> ile <u>E</u> dit <u>V</u> iew Fi <u>t</u> s <u>P</u> hases	<u>D</u> ata Ca <u>l</u> culations <u>H</u> elp
S S S	
Fit Tree X	Coloulation Configuration
V 🕅 Ni from scratch	Calculation Configuration
Colculation 1	Scatterer Type
	Neutron O X-ray
	Range 0.01 to 50.0 spacing 0.01
Plot Control X	Scale Factor 1.0 Qmax 25.0
×	Qdamp 0.08 Qbroad 0.0
r 🗸	
Y	
Gcalc	
effect 2	
onset 3	
Plot Reset	
PDEfit2 Output	
	×
PDFfit2 Output	×

Multistage fitting

Sequential refinement where fits are chronologically linked

<u>F</u> ile <u>E</u> dit <u>∨</u> iew Fi <u>t</u> s <u>P</u> hases	<u>D</u> ata	Ca <u>l</u> culations <u>H</u> elp				
Fit Tree X Parameters Results						
🛱 LaMnO3-PBNM		Initial	Fixed	Refined	<u></u>	
550K.gr	1	=lcmo-pbnm-550:1		5.54112301089		
✓ Micmo-pbnm-650	2	=lcmo-pbnm-550:2		5.7467340003		
	3	=lcmo-pbnm-550:3		7.68397896947		
Plot Control X	7	=lcmo-pbnm-550:7		0.00201860852715		
X	8	=lcmo-pbnm-550:8		0.00217981215605		
step 🗸	9	=lcmo-pbnm-550:9		0.00408078054004		
	10	=lcmo-pbnm-550:10		0.0044913862195		
	21	=lcmo-pbnm-550:21		-0.00837699376439		
@2	22	=lcmo-pbnm-550:22		0.0489062376597		
@3	23	=lcmo-pbnm-550:23		0.0742991663718		
@7	24	=lcmo-pbnm-550:24		0.487574732275	-	
	25	=lcmo-pbnm-550:25		0.725295010199		
offset 3	26	=lcmo-pbnm-550:26		0.305613295225		
	77	=lcmo-pbnm-550:27		0.039219781619	· · · · · · · · · · · · · · · · · · ·	
Plot Reset					Apply parameters	
PDFfit2 Output					×	

Sequential fitting of incremental r-series

Appearance of the setup panel for specifying an incremental r-series fit conditions.

<u>F</u> ile <u>E</u> dit ⊻iew Fi <u>t</u> s <u>P</u> hases	<u>D</u> ata Ca <u>l</u> culations <u>H</u> elp
Rt Tree & x ▼ ∰fit-Ni ∰ Ni ∭ Ni_2-8.chi.gr	Select a fit from the tree on the left and set the first value, last value, and the step size of the maximum and/or minimum of the fit range below. If you have not set up a fit to be the template for the series, hit cancel and rerun this macro once a fit has been created. fit maximum first 5 last 20 step 5
Plot Control × X step ✓ Y @1 @10 @20 @100 @20 @100 ✓ Plot Reset	fit minimum first last step
PDFfit2 Output	×

Sequential fitting of temperature series

Setting up a T-series sequential refinement for LaMnO₃.

L LABORATORY

15L

Sequential fitting of temperature series

Displaying refinement results as a function of external parameter: T-series refinement

וכר

Sequential fitting of doping series

Loading of the Ca-doping data series of LaMnO₃ system.

<u>F</u> ile <u>E</u> dit ⊻iew Fi <u>t</u> s <u>P</u> hases	<u>D</u> ata Ca <u>l</u> culations <u>H</u> elp	
Fit Tree × ▼ Icmo-pbnm Image: State of the state	Select a fit from the tree on the left then add datasets and assign doping elements and values below. If you have not set up a fit to be the template for the series, hit cancel and rerun this macro once a fit has been created. Base element La Dopant Ca	
	Doping Data Set	
Plot Control × X temperature v Y @1 @2 @3 @7 ~ offset 3	0.04 /x004t010q35.gr 0.12 /x012t010q35.gr 16.0 Click header to sort by doping 20.0 /x020t010q35.gr 24.0 /x024t010q35.gr 28.0 /x028t010q35.gr ○ /x028t010q35.gr ○ /x028t010q35.gr ○ /x028t010q35.gr	
Plot Reset	<u> ≪</u> <u>o</u> κ <u>S</u> ancel	
PDFfit2 Output	×	
Verify that proper doping assignment was carried out!		

Sequential fitting of doping series

Displaying refinement results as a function of external parameter: doping series

LABORATORY

٦SL

Nanoparticle structure: spherical!

Fitting the structure of a nanoparticle: 3nm CdSe nanoparticle example

15L

Displaying the structure

Using AtomEye functionality for 3D visualization of the initial and refined PDF structures

L LABORATORY

PDFgui tutorial content & agenda

- Plan is to cover different examples featuring various aspects of PDFgui functionality
- GOALS:
 - becoming familiar and comfortable with the program
 - building up basic expertise and awareness of various PDFgui capabilities
 - Exploring a few more complex examples
- Examples:
 - Simulating PDFs
 - Ni X-ray and neutron data refinement
 - Ni neutron-Xray corefinement
 - Ni/Si mixture refinement; phase analysis
 - Ni T-dependence sequential refinement
 - LaMnO₃ at 300 K complex system
 - LaMnO₃ T-dependence sequential refinement
 - LaMnO₃ at 800 K r-dependent sequential refinement
 - La₂CuO₄ composition/doping-dependence sequential refinement

