Elliptic Flow at PHOBOS and the Eccentricity Conundrum

Richard Bindel
For the PHOBOS Collaboration
Collaboration (June 2006)

Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Richard Bindel, Wit Busza (Spokesperson), Zhengwei Chai, Vasundhara Chetluru, Edmundo García, Tomasz Gburek, Kristjan Gulbrandsen, Clive Halliwell, Joshua Hamblen, Ian Harnarine, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Jay Kane, Piotr Kulinich, Chia Ming Kuo, Wei Li, Willis Lin, Constantin Loizides, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej Olszewski, Robert Pak, Corey Reed, Eric Richardson, Christof Roland, Gunther Roland, Joe Sagerer, Iouri Sedykh, Chadd Smith, Maciej Stankiewicz, Peter Steinberg, George Stephens, Andrei Sukhanov, Artur Szostak, Marguerite Belt Tonjes, Adam Trzupek, Sergey Vaurynovich, Robin Verdière, Gábor Veres, Peter Walters, Edward Wenger, Donald Willhelm, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Shaun Wyngaardt, Bolek Wysłouch

ARGONNE NATIONAL LABORATORY
INSTITUTE OF NUCLEAR PHYSICS PAN, KRAKOW
NATIONAL CENTRAL UNIVERSITY, TAIWAN
UNIVERSITY OF MARYLAND

BROOKHAVEN NATIONAL LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
UNIVERSITY OF ILLINOIS AT CHICAGO
UNIVERSITY OF ROCHESTER
Measurement of elliptic flow at PHOBOS

Advantages of the PHOBOS detector:

Excellent Global Shape Detection:
Octagon and Rings provide nearly full azimuthal coverage over a wide range of pseudorapidity.

Centrality Measure

PID and Clean Signal:
Two Spectrometer Arms provide particle identification and noise rejection by means of tracking algorithm
Measurement of elliptic flow at PHOBOS

Two Analysis Techniques are used at PHOBOS:

- **Hit Based Method** (Hits in the octagon and rings)
- **Track Based Method** (Tracks in the spectrometer also)

Both employ the reaction plane / subevent technique, in which the orientation of the reaction is found in one portion of the detector, while another detector region is subsequently correlated to it.
Measurement of elliptic flow at PHOBOS

Orientation determined using one Octagon subevent.

-0.1 < η < -3.0

0.1 < η < 3.0

The hit distribution in the second subevent is measured relative to the reaction plane angle.

Example angular distribution taken over many events
Measurement of elliptic flow at PHOBOS

Orientation determined using one Octagon subevent.

$0.1 < \eta < 3.0$

ψ_2

The hit distribution in the second subevent is measured relative to the reaction plane angle.

$-0.1 < \eta < -3.0$

example angular distribution taken over many events
Measurement of elliptic flow at PHOBOS

Hit Based Method

Orientation determined using the full Octagon

$3.0 < \eta < -3.0$

$\pm 3.0 < \eta < \pm 5.4$

The hit distribution in the rings is measured relative to the reaction plane angle.

The combination of these measurements spans $-5.4 < \eta < +5.4$

Example angular distribution taken over many events
Measurement of elliptic flow at PHOBOS

Orientation determined using symmetric, azimuthally complete subevents

Tracks in the Spectrometer arms are correlated to the reaction plane

Example angular distribution taken over many events

0 < \eta < 1
Measurement of elliptic flow at PHOBOS

Track Based Method

The rings and octagon are used independently as a cross check.

- **ψ**
- Octagon: \(\approx \pm 2 < \eta < \pm 3 \)
- Spectrometer: \(0 < \eta < 1 \)

Example angular distribution taken over many events.
Measurement of elliptic flow at PHOBOS

Track-Based Method

The rings and octagon are used independently as a cross check.

\[\psi_2 \]

Spectrometer: \(0 < \eta < 1 \)

Example angular distribution taken over many events.

Rings: \(\pm 3.0 < \eta < \pm 5.4 \)

Restricted to the
Measurement of elliptic flow at PHOBOS

An event at PHOBOS can be divided many ways…
Measurement of elliptic flow at PHOBOS

An event at PHOBOS can be divided many ways…

hydrodynamics in action!

…but the resulting picture remains consistent

Good agreement using various η slices is a valuable cross-check
While Au+Au continues to hold many challenges for hydrodynamics, Cu+Cu provides a number of new and unique experimental constraints.
Why study flow in Cu+Cu?

Mid-central AuAu collision

roughly same number of participants

Central CuCu collision
Why study flow in Cu+Cu?

- Mid-central AuAu collision
- Some observables scale with number of participants
- Similar dN/d\(\eta\)

- Central CuCu collision
- Roughly same number of participants

200 GeV

Why study flow in Cu+Cu?

Mid-central AuAu collision

Some observables scale with number of participants

Similar dN/d\(\eta\)

roughly same number of participants

Central CuCu collision

Flow is expected to depend on Geometry!

However…
Why study flow in Cu+Cu?

Mid-central AuAu collision

Some observables scale with number of participants

Similar $dN/d\eta$

roughly same number of participants

Central CuCu collision

Flow is expected to depend on Geometry!

However…

Using two species lets us change the geometry while holding the number of participants constant
What can we say about the geometry?

The shape of the participant region is generally expressed by the eccentricity

$$\epsilon = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Cartoon of a collision.

- x-axis along the reaction plane
- y-axis is the major axis of the ellipse

I’ll denote eccentricity in this orientation as $\epsilon_{\text{standard}}$

(of course, experimentally, the position of each nucleon is not observable and therefore neither is σ_x^2 or σ_y^2)
Bridging experiment and geometry

Since experiments cannot measure the underlying geometry directly, models remain a necessary evil.

Experiment

multiplicity, etc.

Models

Geometry

• centrality
• impact parameter
• number of participants
• eccentricity

Models are also needed to connect fundamental geometric parameters with each other
Modeling the Geometry

Nearly the most straightforward approach to describing collision geometry has been to invoke Glauber’s formalism for the scattering of a particle off of a nuclear potential.

Glauber Assumptions

- Nucleons are distributed according to a density function (e.g. Woods-Saxon)
- Nucleons proceed in a straight line, undeflected by collisions
- Irrespective of previous interactions, nucleons interact according to the inelastic cross section (measured in pp collisions).
Modeling Geometry

One application of the Glauber formalism is a Monte Carlo technique.

In a Glauber Monte Carlo, nuclei are randomly generated given certain physical constraints (Woods-Saxon probability distribution, etc.)

Numerous simulated nuclei are “thrown” at each other and the average of various geometric properties are taken from these events.

This has been a very successful tool at RHIC in relating fundamental geometric variables (cross section, impact parameter, number of participating nucleons, etc.)
GlauBall Algorithm

“GlauBall” is the PHOBOS implementation of a Glauber MC

Nucleons are distributed randomly based on an appropriately chosen Woods-Saxon radial density, and polar coordinates are assigned arbitrarily.

Note: An internucleon separation can be introduced at this step

Subsequently, only the x and y nucleon positions are relevant, so the nuclei can be thought of as 2 dimensional projections
GlauBall Algorithm

The nuclei are offset by an impact parameter generated randomly from a linear distribution.

Nucleons are treated as hard spheres. Their 2D projections are given an area of σ_{NN} (taken from pp inelastic collisions).

The nuclei are “thrown” (their x-y projections are overlapped), and opposing nucleons that touch are marked as participants.

Can we use the model to relate eccentricity to a well understood variable such as the number of participants?
Eccentricity versus N_{part}

- AuAu collisions with same N_{part}

 - Glauber collisions are modeled over a range of impact parameters and are sorted by the number of participants.

 - An eccentricity distribution is built up for each N_{part}

- The black line shows the average eccentricity
 (which will be used later on)
The Data

PHOBOS has produced an extensive series of flow measurements probing multiple controlling parameters:

- Centrality
- Transverse Momentum
- Pseudorapidity
- Energy
- Species / System Size
V_2 VS η

Cu-Cu: S. Manly et al., (PHOBOS Collaboration) Proc. QM05, nucl-ex/0510031

Cu+Cu about 20% lower than Au+Au
\[v_2 \text{ vs } N_{\text{part}} \text{ for Au and Cu} \]

PHOBOS 200 GeV Hit Based
Statistical errors only

\[|\eta| < 1 \]

Can this be explained by the geometry?

Very different flow at the same \(N_{\text{Part}} \), but the overlap geometry is different

Cu-Cu: S. Manly et al., (PHOBOS Collaboration), Proc. QM05, nucl-ex/0510031
v_2 vs N_{part} for Au and Cu

PHOBOS 200 GeV Hit Based
Statistical errors only

$|\eta| < 1$

Au+Au

Cu+Cu
preliminary

Large flow for central events!

Standard ε drops to zero for central events!

Cu-Cu: S. Manly et al., (PHOBOS Collaboration), Proc. QM05, nucl-ex/0510031
if we scale out the geometry hydrodynamic considerations would lead us to believe that the elliptic flow should be continuous between the two species

No agreement between Cu and Au scaled by the standard eccentricity
When we examine the eccentricity distribution for CuCu, it looks much broader than AuAu.

Also, notice that there are many more events with negative eccentricity.
Previous studies of eccentricity fluctuations

Fluctuations in eccentricity have been studied before using Glauber MC.

Miller and Snellings suggested that eccentricity fluctuations might generate differences between the two particle correlation methods and higher order cumulant analyses.

In particular, negative eccentricity fluctuations contribute strongly to this difference.
Meaning of Negative Eccentricity

Here we revisit the standard definition of eccentricity applied to a Gluaber model.

\[e = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2} \]
Meaning of Negative Eccentricity

Negative eccentricity results when $\sigma_x^2 > \sigma_y^2$, apparently due to fluctuations in the positions of the nucleons.

Because of its smaller size, CuCu is more susceptible to fluctuations.
One reasonable method is to realign the coordinate system to maximize the ellipsoidal shape (a principal axis transformation).

The eccentricity *found in the rotated, participant coordinate system* is denoted $\varepsilon_{\text{participant}}$.
Greater fluctuations in Cu+Cu. Positive fluctuations lead to non zero mean.
Robustness of Geometry Variables

• Distance of closest approach between nucleons
 little change from 0 fm, to 0.4 fm, all the way up to 0.8 fm
• Skin depth
 modified within reason, and all the way down to zero for fun
• Nucleon-nucleon cross section at $\sqrt{s} = 200$ GeV
 from 35 mb to 45 mb
• Nuclear radius
 deviated ±10% from the nominal values

$\varepsilon_{\text{participant}}$ even slightly more robust than $\varepsilon_{\text{standard}}$
Impact of Eccentricity Fluctuations

Fluctuations in eccentricity are important for the Cu-Cu system.

Must use care in doing Au-Au to Cu-Cu flow comparisons. Eccentricity scaling depends on definition of eccentricity.
Elliptic Flow Puzzle Solved?

Standard Eccentricity Scaling

Participant Eccentricity Scaling

Error Bars: 1σ sys. + stat.

PHOBOS 200 GeV

- 200 GeV AuAu, tracks
- 200 GeV CuCu, tracks
- 200 GeV AuAu, hits
- 200 GeV CuCu, hits
<dN/dy> / <S> scaling

G. Roland et al., Proc. QM2005, nucl-ex/0510042

Overlap Area

Caveat: dN_{ch}/d\eta corrected to dN_{ch}/dy

STAR and AGS Au+Au and CERN Pb+Pb results have not been modified to scale by \(\varepsilon_{\text{part}}\)

(1/<S>)dN/dy scaling:

C. Adler et al. (STAR), PRC 66 034904 (2002)

J. Barrette et al. (E877), PRC 51, 3309 (1995); 55, 1420 (1997)

Au-Au:

Cu-Cu:

S. Manly et al., (PHOBOS Collaboration), Proc. QM05, nucl-ex/0510031
Conclusions

• Flow in Cu+Cu is found to be larger than initially anticipated, and it is not vanishingly small for the most central events.

• We encourage careful consideration of the definition of eccentricity. Particularly in the case of Glauber Monte Carlo calculations, we suggest that the participant eccentricity may be the relevant variable.

• When expressed in terms of participant eccentricity, v_2/ε is consistent for Cu+Cu and Au+Au, and scales with other elliptic flow measurements at AGS, SPS, and RHIC energies.
Backup Slides
Glauber Parameters Changed

Systematic Source

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard</th>
<th>How Much We Vary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleon-nucleon cross-section</td>
<td>42 mb (for 200GeV)</td>
<td>30 mb (<20GeV)</td>
</tr>
<tr>
<td></td>
<td>45 mb (>200GeV)</td>
<td></td>
</tr>
<tr>
<td>Nuclear skin depth</td>
<td>0.535fm (Au)</td>
<td>±10%</td>
</tr>
<tr>
<td>Nuclear radius</td>
<td>6.38fm (Au)</td>
<td>±10%</td>
</tr>
<tr>
<td>Minimum nucleon separation</td>
<td>0.4fm (like HIJING)</td>
<td>0fm 0.8fm</td>
</tr>
</tbody>
</table>

\[
\rho(r) = \frac{\rho_0 \left(1 + wr^2 / R^2\right)}{1 + \exp((r - R) / a)}
\]

H. DeVries, C.W. De Jager, C. DeVries, 1987