System Size and Energy Dependence of Elliptic Flow

Alice C. Mignerey, University of Maryland for the PHOBOS Collaboration

PHOBOS Collaboration (August 2005)

Burak Alver, Birger Back, Mark Baker, Maarten Ballintijn, Donald Barton, Russell Betts, Richard Bindel, Wit Busza (Spokesperson), Zhengwei Chai, Vasundhara Chetluru, Edmundo García, Tomasz Gburek, Kristjan Gulbrandsen, Clive Halliwell, Joshua Hamblen, Ian Harnarine, Conor Henderson, David Hofman, Richard Hollis, Roman Hołyński, Burt Holzman, Aneta Iordanova, Jay Kane, Piotr Kulinich, Chia Ming Kuo, Wei Li, Willis Lin, Constantin Loizides, Steven Manly, Alice Mignerey, Gerrit van Nieuwenhuizen, Rachid Nouicer, Andrzej Olszewski, Robert Pak, Corey Reed, Eric Richardson, Christof Roland, Gunther Roland, Joe Sagerer, Iouri Sedykh, Chadd Smith, Maciej Stankiewicz, Peter Steinberg, George Stephans, Andrei Sukhanov, Artur Szostak, Marguerite Belt Tonjes, Adam Trzupek, Sergei Vaurynovich, Robin Verdier, Gábor Veres, Peter Walters, Edward Wenger, Donald Willhelm, Frank Wolfs, Barbara Wosiek, Krzysztof Woźniak, Shaun Wyngaardt, Bolek Wysłouch

ARGONNE NATIONAL LABORATORY
INSTITUTE OF NUCLEAR PHYSICS PAN, KRAKOW
NATIONAL CENTRAL UNIVERSITY, TAIWAN
UNIVERSITY OF ILLINOIS AT CHICAGO
UNIVERSITY OF MARYLAND
UNIVERSITY OF ROCHESTER

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Past Studies of Elliptic Flow of charged hadrons in Au–Au Collisions

Centrality Dependence

Energy and η dependence

Error bars: 1σ statistical
Error boxes: 90% C.L systematic
Centrality range 0-40%

B.B. Back et al. (PHOBOS Collaboration), nucl-ex/0407012

Measuring Flow in PHOBOS

Hit-Based Method
\[|\eta| < 5.4 \]

Octagon covers
\[-3.0 < \eta < 3.0 \]

If reaction plane uses \(\eta = 0.1 \) to 3.0
then flow found for \(\eta = -0.1 \) to -3.0

Track-Based Method
\[|\eta| < 1.0 \]

3 sets of Rings
covering \(|\eta| = 3.0 \) to 5.4

Reaction plane found in octagon
and rings using \(|\eta| = 2.0 \) to 5.4
flow from the spectrometer

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Comparing the number of participants

Central Cu-Cu

Mid-central Au-Au

\(<N_{\text{part}} > \)
99
35-40%

Cu+Cu

Preliminary
3-6%, \(N_{\text{part}} = 100 \)

Au+Au

35-40%, \(N_{\text{part}} = 99 \)

200 GeV

G. Roland et al., Proc. QM2005, nucl-ex/0510042 and

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Comparing the number of participants

Central Cu-Cu

Mid-central Au-Au

<\(N_{\text{part}}\)>

100

3-6%

<\(N_{\text{part}}\)>

99

35-40%

Cu+Cu

Preliminary

3-6%, \(N_{\text{part}} = 100\)

Au+Au

35-40%, \(N_{\text{part}} = 99\)

200 GeV

But the shapes of the overlap regions are very different

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Elliptic flow of Cu–Cu compared to Au–Au

η dependence

0-40% centrality

Error bars: 1σ statistical

Au–Au
B.B. Back et al., (PHOBOS)
PRL 94 122303 (2005)

Cu–Cu
S. Manly et al., Proc. QM05, nucl-ex/0510031

Cu–Cu about 20% lower than Au–Au

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Elliptic flow of Cu–Cu – centrality dependence

Error bars: 1σ statistical
Error boxes: 90% C.L systematic

Hit Based 62.4 GeV PHOBOS Preliminary $|\eta| < 1$

Cu–Cu, h^\pm

S. Manly et al., Proc. QM05, nucl-ex/0510031
Comparison of Cu–Cu and Au–Au

Important features:

Very different elliptic flow for the same Npart - But remember these had very different overlap geometries

CuCu flow still significant at most central collisions

200 GeV $|\eta| < 1$

Error bars: $\pm 1\sigma$ statistical

Au-Au: B.B. Back et al. (PHOBOS Collaboration), nucl-ex/0407012
Cu-Cu: S. Manly et al., Proc. QM05, nucl-ex/0510031

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Comparison of Cu–Cu and Au–Au

Important features:
- Very different elliptic flow for the same Npart -
- But remember these had very different overlap geometries
- CuCu flow still significant at most central collisions

Can we understand this in terms of geometry?

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Eccentricity – ε

a representation of geometrical overlap

$$\varepsilon = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Au-Au collision
with Npart = 78

Au-Au collision
with Npart = 64
Eccentricity – ε

a representation of geometrical overlap

$$\varepsilon = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Au-Au collision with $N_{\text{part}} = 78$

Au-Au collision with $N_{\text{part}} = 64$

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Sample of Cu–Cu collisions

Cu-Cu collision with Npart = 33

Gives negative eccentricity ε

Cu-Cu collision with Npart = 28

$$\varepsilon = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2}$$

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Sample of Cu–Cu collisions

Cu-Cu collision with Npart = 33

Cu-Cu collision with Npart = 28

Principal axis transformation

Maximizes the eccentricity

\[\varepsilon = \frac{\sigma_y^2 - \sigma_x^2}{\sigma_y^2 + \sigma_x^2} \]
Effect of the eccentricity definition

Standard

Participant

Au-Au

Cu-Cu

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
Comparison of standard and participant eccentricity

Standard Eccentricity

PHOBOS 200 GeV

- Cu+Cu (preliminary)
- Au+Au

Participant Eccentricity

PHOBOS 200 GeV

- Au+Au
- Cu+Cu (preliminary)

Error bars: 1σ stat + sys

-

![Graphs showing comparison of standard and participant eccentricity](image_url)
Comparison between Systems and Energies

\(\langle v^2 \rangle / \langle e_{\text{part}} \rangle \)

PHOBOS preliminary

- 200 GeV, tracks
- 200 GeV, hits
- 130 GeV, hits
- 130 GeV, Star
- 4 GeV, E877

\(1/(\langle S \rangle dN/dy) \) scaling:
 - C. Adler et al. (STAR), PRC **66** 034904 (2002)
 - J. Barrette et al. (E877), PRC **51**, 3309 (1995); **55**, 1420 (1997)

Au-Au: B.B. Back et al. (PHOBOS Collaboration), nucl-ex/0407012

Cu-Cu: S. Manly et al., Proc. QM05, nucl-ex/0510031

Error bars: \(1\sigma \) stat + sys

\(1/(\langle S \rangle) \) overlap area

measured \(dN_{\text{ch}} / d\eta \)
corrected to \(dN_{\text{ch}} / dy \)

G. Roland et al., Proc. QM2005, nucl-ex/0510042

Alice C. Mignerey, PANIC 2005, Santa Fe, NM
PHOBOS has measured elliptic flow for charged hadrons in Cu-Cu at 62.4 and 200 GeV as a function of centrality and pseudorapidity.

Demonstrated the importance of understanding the geometry - definition of eccentricity.

When expressed in terms of PARTICIPANT eccentricity, the centrality dependence of v_2/ε is consistent for Cu-Cu and Au-Au and scales with other elliptic flow measurements at AGS, SPS and RHIC energies.