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LiCoO2-based Cathodes Set the Benchmark in 
Performance in a Variety of Uses
These ultra-compact power sources are being 

developed for:

• A new generation of spacecraft
• Automotive power
• Portable electronics 
• Implantable medical devices, such as drug 

delivery systems
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Uses of LixAg2V4O11-based Batteries

• Particularly useful in medical applications
• High power delivery
• Non-toxic 
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LiCoO2-based Microbattery design

2 
µm

A microbattery is comprised of the 
following components:

• An Electrolyte - Lithium 
phospho-oxynitride glass 
(LIPON)

• Anode - Metallic Lithium 
• Cathode - LiCoO2
• The cathode is deposited 

directly onto Ti current 
collectors by sputtering, 
annealed at low temperature 
(~500oC compared to ~600oC 
for commercial batteries).

The total cell thickness is less 
than 20 µm.
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In-situ XAS of LiCoO2-based Battery

• We expect the following things to change as Li is de-intercalated:
– Cell parameter (coupled changes in atomic positions)
– Oxidation state of Co and/or O for charge compensation
– Local ordering (decoupled changes in atomic positions
– Scattering amplitude (fewer Li ions)



XAS Studies of Nanocatalysis and Chemical Transformation

Electrochemical behavior
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Electrochemically, the charge/discharge 
behavior corresponds to that of a bulk 
LiCoO2 cell.

For example, we find the same features 
on the dQ/dV vs. V plot that has been 
reported by Reimers et al.
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X-ray absorption near-edge structure of Co 
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•The white line of the near-edge undergoes a shift of ~1.3 eV

• similar shift for a LixNi0.8Co0.2O2 cell has been reported [Johnson and Kropf].
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Real-space manifestation of cycling
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•The amplitude of the Fourier transform peaks change as a function of charge/discharge
•The two ovals in the inset show the regions of the layered structure that correspond to the 
peaks. 
•The inter-/intra-layer atoms distances contract as a function of charging.
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PCA Formulation
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PCA: Components and Reconstruction
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PCA: Possible Reaction Pathways
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Co K-edge in Li(1-x)CoO2

The Co K-edge XANES in 
Li(1-x)CoO2 as a function of x. 

The s to d transition and s to 
p transition (A, B and C) are 
labeled.

Co does appears to be 
involved in charge 
recompensation

…because
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if the d-band occupancy of 
Co changes with 
increased delithiation, 
then this peak amplitude 
should increase
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Theoretical fit to real-space data
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Theoretical fit to real-space data

The atomic structure 
around Co shows 
charge compensation 
occurs first by 
formation of O holes 
(for x<0.25).

XANES shows us that 
for x>0.25, charge 
compensation occurs 
through Co d-hole 
formation.
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Spectro-electrochemical Cell

Spectro-electrochemical cell for in-situ XAS at the O K-edge being  developed.

Half-cell built and tested.

appropriate
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How Optimal is the Structure in Thin-film 
LiMCoO2 Cathode?

• The process of thin-film deposition may render the structure to be far from 
equilibrium.

• Non-equilibrium structure will affect the performance of the cell.
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LiNiO2 cathodes: thin-film and bulk
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•The a) oscillating function χ(k) and its Fourier transform, b) FT[ χ(k)*k2 ] 
function for LiNiO2, as we go from bulk (blue) to thin-film (red).

•The amplitude of the Ni-Ni peak of the thin-film (in the plane of the 
substrate) is reduced and a shoulder is observed.  This total effect cannot 
be explained by Jahn-Teller distortions.
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Theoretical simulation of metal environment

0.05

0.1

0.15

0.2

0 2 4 6

F
T

( χ
(k

)*
k

3
)

R [Å]

Individual 
scattering 
paths with 
0.14 Å 
splitting

Experimen
tal

Model 
calculated 
by FEFF

0 2 4 6 8

R [Å]

Ni Environment in LiNiO2 thin filmNi Environment in LiNiO2 bulk powder

Experimental

Model calculated 
by FEFF

• Our simulation shows that the set of metal-metal neighbors break away from a 
six-fold symmetry to a two-fold symmetry; i.e.,  the six atoms are split into a set 
of two (at a slightly shorter distance) and four (at slightly larger distance).

• The same effect is observed in LiCoO2 thin films.
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EXAFS Experiments Designed to Study the 
Local Strain in LiCoO2 Thin Films 

Samples:

• Multiple 700nm of LiCoO2 was deposited on 2” Si wafer
• Samples annealed to different temperatures
• Fluorescence EXAFS data collected at X23B and X11B
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Bulk Stress Relaxation With Annealing on 
Isostructural LiCoO2
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Wafer curvature measurement of stress, shows bulk stress being 
annealed out with heat treatment
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Co Atomic Neighborhood with Annealing
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Relaxation  of stress takes 
place in a complex set of 
steps.

Stress on the Co-O bonds 
relaxed by 10 hrs. anneal at 
475 0C

Stress remains on the Co-Co 
plane after annealing for 10 
hrs at 475 0C.

Stress released by annealing 
at 700 0C for 2 hrs.  However 
a c-axis expansion remains.
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Angle-resolved XAS
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• No texturing effect picked 
up by the plane-polarized 
X-rays.

• Orientation of the thin film 
with respect to the 
polarized X-ray beam is not 
the cause of this effect.
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The same effect is observed in LiCoO2

• The effect of the 
amplitude change 
at the Co-Co bond 
can be modeled by 
changing the level 
of strain on the Co-
Co bond.
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Experiments at the O K-edge

U7 endstation at the NSLS: 

•1200 line grating mono; 

•Focused beam (~1.5mm x1.5mm); 

•Fluor. and P.E.Y. detector; 

•motorized sample manipulator (4 degrees of 
motional freedom)
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O K Fluorescence Yield from LiCoO2 on Si wafer
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bonding increases 
with annealing
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surface oxide 
states.
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O K Electron Yield from LiCoO2 on Si wafer
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Surface oxide 
states dominate 
the electron yield 
signal.  They 
diminish with 
annealing 

while 

the degree of 
covalent σ*

bonding increases 
with annealing.
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Comparison of O K FY data with FEFF8 Theory
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Ex-situ Study of Li Intercalation in Ag2V4O11

Ag and V K-edges are well separated in energy and this cathode is not 
optimized for in-situ studies. 

We expect the following things to change as Li is intercalated:
- atomic positions (coupled/de-coupled)
- oxidation state of V and Ag with charge compensation
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Change in the Oxidation State of V
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Changes in V Atomic Neighborhood
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Ionic Neighbor Distances Around Vanadium

Equilibrium ionic distances will be a function of the local Coulumbic interactions 

We observe that V-V ionic distance decreases with even 0.79 mol Li/ mol SVO
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Phase segregation between SVO and the phase at 5.59 mol Li/ mol SVO

However, this phase segregation not observed at lower lithiation



XAS Studies of Nanocatalysis and Chemical Transformation

Ag K-edge analysis of LixAg2V4O11
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• FT {χ′} at the silver k-edge of the samples.  Features of SVO are well resolved 
from those of metallic Ag. 
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S0
2 Determination in LixAg2V4O11
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Disorder: Ag K-edge analysis of LixAg2V4O11
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The remaining difference in amplitude at the Ag-Ag bond is from disorder: 
σ2 (fcc Ag) = 89% σ2 (Li2.13Ag2V4O11)
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LC XANES Using SVO and Ag as Endpoints

• A different story from Ag EXAFS
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Concluding Remarks

• XANES and EXAFS tell complementary stories
– Interpretation of XANES and EXAFS data should be internally 

consistent 
• PCA is very useful in providing objective global picture prior to more 

subjective analysis of XANES and EXAFS
• Attempt should be made to look at all the relevant atomic species in your 

system
– Low energy excitations can provide some very useful information, e.g. 

3d transition metal L-edge data.
• Linear Combination approaches can simplify an otherwise complicated 

picture
– Especially useful for systems where the correct structural model is not 

known.
• In EXAFS analysis, de-coupling steps should be taken to extract information 

about correlated properties.
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