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Characterization of Catalytic Active Centers

• Important characteristics
- nuclearity of active centers
- connectivity to nearest and next-nearest neighbors
- geometry of active center
- changes that occur upon adsorption or reaction

• X-Ray absorption spectroscopy
- XANES – oxidation state and local coordination
- EXAFS – local coordination and geometry

• X-Ray imaging
- Spatial distribution of oxidation states



What are “Soft” and “Hard” X-rays?

Soft X-rays
• 200 eV→ ~2000 eV
• Oxidation State
• Coordination
• In situ studies limited by
short attenuation lengths

AlK ClKCuL

Hard X-rays
• 2000eV +
• Oxidation State
• Coordination
• In situ studies not limited 
by attenuation lengths 
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Cu-Exchanged Zeolites

• Cu-exchanged zeolites (Y and ZSM-5) are active catalysts 
for:

- NO decomposition and reduction

- Synthesis of dimethyl carbonate, dimethoxy methane, 
methyl formate

- Desulfurization of diesel fuel

• The oxidation state, nuclearity, and local environment of Cu 
cations in zeolites is strong function of the exchange chemistry

• For structure-function studies, it is essential to obtain a 
complete picture of the oxidation state and local environment 
of Cu cations

• X-Ray absorption spectroscopy using hard and soft x-rays 
can provide the needed information



Cu-Exchanged Zeolite
• Cu-Y, Cu-ZSM-5, and Cu-Mord were prepared by solid-state exchange (SSIE)

Cu+Cl- + H+-Z- → Cu+-Z- +HCl Silicon
Oxygen
Aluminum
Copper

• What is the local structure and oxidation state of Cu?

• Is CuCl occluded in the pores?

• Does the coordination of Cu+ change upon adsorption of CO?



Cu and Al Site Geometries from Cu and Al EXAFS
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• Cu and Al EXAFS provide an average view of site geometery

• Evidence for small 
clusters of CuCl obtained 
from Cl K-edge XANES



Possible Cations-Exchange Sites in ZSM-5
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Distribution of Cu+ Sites in ZSM-5

• Simulation of the EXAFS pattern suggest that 70% of Cu+ is in 
I2 sites and 30% in Z6 sites



Change in Cu+ Coordination upon CO 
Adsorption in Cu-ZSM-5

• Position of preedge feature is characteristic of Cu+

• CO adsorption increases the total coordination of Cu+ from 2 to 3, 
causing a decrease in the intensity of the preedge XANES feature

I2

Z6
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Preparation of Cu/SBA-15

Hydrogen
Carbon
Oxygen
Silicon
Chlorine
Copper

Vaporize

CuCl

[CuOtBu]4

Cu+Cl-

Silanol

Non-Aqueous 
Grafting

Solid State 
Exchange

• Isolated Cu-O-Cu by EXAFS

O

Cu

O

O

O

O

O

O

O
O

Cu Cu Cu

tBuO tBuO
tBuO

O
O

Cu

O

• Primarily isolated     
copper by EXAFS
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Local Cu after He pretreatment at 673 K
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Scanning Transmission X-ray Microscope 
(STXM)

• Ability to image individual catalyst particles and 
collect local spectrum

• X-ray absorption spectra of individual particles can 
be compared to the bulk absorption of catalysts by 
removal of the Zone plate

• 40 nm beam size
• 200 – 2000 eV



In-Situ Cell for Soft X-Ray Studies

Micro fluidic Channel

Thermocouple well

Si frame 
(200μm thick)
(5mm x 5mm)

Si3N4 window 
(100nm thick)
(500μm x 500μm)

150 μm



In situ L3 edge XANES of Cu/SiO2
taken during CO reduction and O2
oxidation: P = 1 atm; T = 35-200oC

927 928 929 930 931 932 933 934 935 936 937

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

A
bs

or
pt

io
n 

(A
.U

.)
Energy (eV)

 4% CO at 35°C
 4% CO at 130°C
 4% CO at 200°C
 10% O2 (after cooling to R.T.)

Cu(II)

Cu(I)

CO + 2CuO Cu2O +CO2

In-Situ STXM applied to the Reduction of Cu 
cations on silica from Cu(II) to Cu(I)
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STXM images of Cu/SBA-15 
taken at the Cu2+ peak



Theory Experiment

r(V=O) 1.58 Å 1.58±0.03 Å a

r(V-O) 1.76 Å 1.79±0.02 Å a

ν(V=O) 1035 cm-1 1030-1040 cm-1 a

D2 band 611 cm-1 606 cm-1 b

ν(V-O-Si) 991 cm-1 980 cm-1 a

D1 band 506 cm-1 495 cm-1 b

A Model for Isolated Vanadate Species

H O Si V

• VO4 attached to silsesquioxane is a good model for VOx/SiO2

a <1 V/nm2 on VOx/SiO2: Bronkema, J.; Bell, A. T. J. Phys. Chem. C 2007, 111, 420
b Amorphous SiO2: Phillips, J. C. Phys. Rev. B 1986, 33, 4443 & 1987, 35, 6409

A. Goodrow and A. T. Bell, J. Phys. Chem. C, 2007



H O Si Mo

Structural Models for Isolated MoOx Species

Di-oxo species Mono-oxo species

• Isolated molybdate species have been described to be either di-
oxo or mono-oxo species based on experimental observation

• Theoretical calculations show that both species are possible

• The structural form of isolated molybdates can be determined by 
simulating both structures and comparing calculated properties with 
those observed experimentally



• Comparisons of  simulations with experimental data (Raman, XANES, and EXAFS) 
indicated that isolated MoOx species on SiO2 are di-oxo structures

Structure of Isolated MoOx Species on SiO2
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• Simulations of EXAFS and 
Raman data are based on 
quantum chemical predictions 
of site geometry and 
vibrational frequencies
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• Simulation of EXAFS patterns confirm the presence of dio-oxo molybdate species

H O Si Mo

S. Chempath and A. T. Bell, 
J. Phys. Chem., 2006

Evidence for Dioxo MoOx Species
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Conclusions

• XANES provides information on site oxidation 
state and symmetry before and after interactions 
with adsorbates

• STXM can be used to image particles at a given 
oxidation state of an element

• EXAFS provides information on site coordination, 
geometry and identity of nearest neighbors

• Interpretation of EXAFS data are strongly aided 
by simulation of x-ray scattering data using models 
of the absorption site geometry based on quantum 
chemical calculations
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The Framework Structure of Y Zeolite

Unit Cell Formula: H52Al52Si140O394

Corner-sharing tetrahedra –
SiO4

- and AlO4
2-

Pore structure

Bronsted acid site: ≡Si-O(H)-Al≡

10 Å



Thermolysis of [CuOtBu]4 grafted material 
gives Cu nanoparticles

[CuOtBu]4
Grafted on SBA-15 
and heated in He 

(573 K, 1hr)

• XANES shows Cu(0) exclusively
• EXAFS matches that of Cu metal

• CNCu-Cu1 = 7.8, RCu-Cu1 =2.52 Å
• CNCu-Cu2 = 4.6, RCu-Cu2 = 3.58 Å

• Average CN correlates to particle size
• Detailed analysis suggests small Cu 

clusters of 55 atoms
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Set Up for In-Situ Al K-edge XANES and EXAFS

Transmission

Fluorescence

Microreactor

Sample 
Chamber

Heater Lead

Gas Inlet

In situ Al K-edge XANES and 
EXAFS data can be acquired in 
either transmission or 
fluorescence mode at BL 9.3.1



“Proof-of-Concept” Confirmed: In Situ 
Reduction of Cu(II)
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