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High Pressure XPS Basic Principles

Why Perform Photoemission Spectroscopy Under Elevated Pressure Conditions?

- Photoemission is Chemically Specific, Quantitative and Surface Sensitive
Most Surface Chemical Processes Do Not Occur Under UHV Conditions

- Atmospheric Chemistry: Surfaces of Ice particles, Liquid Aerosol Particles
- Environmental Chemistry: Mineral/Liquid Interface can Control Contamination in Ground Water
- Catalysis: Most Industrial Processes Occur at Pressures at or Above Atmospheric Pressure

General Concept

H. Siegbahn, K. Siegbahn
J. Electron Spectrosc. Relat. Phenom. 2 (1973) 319.
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High Pressure XPS Berkeley Lab Design

D.F. Ogletree, H. Bluhm, G. Lebedev, C.S. Fadley,
Z. Hussain, M. Salmeron, Rev. Sci. Instrum. 73 (2002) 3872.

to pump  to pump

p1<< pO p2<< pl

> <

X-rays from synchrotron

Differentially-pumped electrostatic
Transfer lens allows operation at

p > 5 torr
BROOKHIAEN

NATIONAL LABORATORY




High Pressure XPS Current and Future Beamlines

Current and Future HP-XPS Experiments Beamline Al g |Gl
(Synchrotron Based) 14(R) -
) 4.0.2 (EPU) 32 2.00
In operation
ALS (2 currently operating) 5:3.2 (Polymers XAFS) > —
1) Undulator Beamline Mainly dedicated to environmentally relevant | &1 (Femtosecondo &3
systems 6.1.2 (Soft X-Ray Micrsocopsy) 30 2.37
- Water adsorption on various surfaces 6.3.1 (Materials Sciences) 89 2.40
- |iQUidS, solutions 6.3.2 (Calibration and Standards) 66 2.90
- Also some catalysis/surfape scienge . 701 (XPS, STXM. SXF. SPEM) 3 2.06
2) Bendulng'lll\/lagrle}t beamline similar to 1) in systems studied Pp— ”
- “spillover” from 1) PP,
BESSY 8.0.1 (SXF) 40 2.38
Dedicated Beamline, investigates catalytically 8.3.2 69
relevant systems 9.0.1 100
9.0 2 (Chemical Dynamics) 40 2.48
Planning Stages 031 CANIS) o0
étgﬁTRA High P XPS ==| 9.3.2 (APSD/AMC, High-Pressure XPS) 45
Soleil Bend Magnet | 10.0.1. (HERS/AMO) 25 211
Diamond 10.3.2 (Micro XAFS) 48 2.31
Mls L0 et Miroscopy i
New Taiwan Synchrotron High P XPS =P 11.0.2 (Molecular Environmental Sciences) 30 1.98
NSLS Undulator 11.3.1 (Small Molecule Crystallography) 66 2.26
® High-Pressure XPS Field is Growing (STXM AlS0) | 1201 arees) 25 2.20
and Com petitive 12.2.2 (High Pressure) 41 2.43
® Room for Further Growth 1232 34 256
e NSLS-Il May Allow New Experimental Methods and All Beamlines” 546
expand Field Further BROOKHAVEN
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Energy Range for High Pressure XPS

ENERGY RANGE:

Soft X-Ray 100 to 2000 eV Mean Free Path of Electrons in Solids Inelastic Scattering
_ _ L o R A B //OfEIectronsin
For Chemical and Catalytic Applications we ol ) Solids Makes
want to be able to probe and be : o Au Electrons In the
surface sensitive to: @;: sol ; ve 50-200 eV KE
£ theory e Range Surface
Examples 8 2 TN Sensitive
K-edges Cls: ~284 eV, N1s: ~400 eV, E = ° 3
O1ls: ~530 eV i ) Ov”_
Transition Metal L-edges: Ti (=460 eV), S e a0 s e a0 a0 000 2000
Fe (~720 eV), CU (~75 eV) electron kinetic energy (eV)
From Zangwill

P (~135 eV), K (~295 eV), Cl (~200 eV)

EXAMPLE: OXIDATION OF METAL, DEPTH PROFILING
What is the depth and extent of oxidation as a function of Oxygen pressure?
- Plot O/Metal Ratio as function of photon energy or probe depth o
O1s Binding Energy: 530 eV

® ° ®
® Need ~1000 eV Photons to Have
®

(] . . .
& 1 MFP to Study Oxidation Occurring
8-10 A Deep
8-10A ~ 2000 eV for up to 20 A deep
[

@
®
— Need Good Flux at Photon Energies

Increasing Pg, Greater Than 1000 eV BROOKHFVEN
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High Pressure XPS and Limitations: Advantages of an Undulator Source

Signal Intensity is Limited by Gas Phase Scattering of Photo-emitted Electrons

Gas iS Pumped Through Entrance Aperture EIeCtron |0ni2a'[i0n Cross SeCtion Of Gas
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Inelastic Scattering is Mostly Due to lonization
z is limited to distances ~ 2r of Gas Phase Molecules
(At 2r p ~ 0.95p,) In o lyac exp(-zo(E)p)

Undulator Source: High Brightness

= Smaller x-ray size allows reduction of r (entrance aperture radius) allows reduction in z
(sample-aperture distance) without reducing Pressure at the Sample

— This reduces gas-phase scattering of photoelectrons
Higher signal intensity at given P
Allows higher Pressures (estimate up to 100 torr with NSLS-II VUV EPU 100 Undulator)
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High Pressure Photoemission End-Station

Experimental Geometry

Elevated Differentially

Pressure
Chamber

Differentially Pumped

Electrostatic Lens X-rays enter through SiN, window
- (typically 100 nm thick, 0.5 x 0.5 mm?
Purified G
_ LR ks active area)
Preparation Manipulator \, From Manifold
Chamber With With Flow Distance between sample and window
Flow Cell Controllers Approximately ¥z inch

Elevated Pressure Chamber
small volume: flow-cell type measurements, contamination reduction
differentially pumped QMS for gas analysis
Gas Manifold
Catalysts for gas treatment/purification, Gas cabinets for Hazardous Gas Storage, Flow Controllers
Preparation Chamber
Surface Preparation Tools: Sputter and Annealing, LEED, Temperature
Programmed Desorption, Metal Evaporators
Sample Types
Single Crystal Model Catalysts, Powders, With Modification Possibly Liquids and Ice
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Novel Experiment With Undulator Source: Dynamic Measurements on the ms Timescale

Example NO, Storage Catalyst

VO 103 MBalCx

o, ™

Fuel Lean Conditions
1) Oxidation of NO Storage of NOx

BaO

Fuel Rich Transients
3) Release and reduction of NOx

Flow Cell in High P XPS Set-up Stroboscopic Measurements using Delay-Line Detector
: CH, Pulses
Electrostatic e+ 0 0t b t3 0Lt 43 OL L, 13 O L 14 > time
Lens 2 - . . . m . . . . . .
Background | :: : i i i & P P
Differentially C-ring S8 CH,
Pumped Pulse Profile
Gas Tube o o b P P
From Pulse NP N | I (i
Valve PCH4 : : : : :
e S Pl Partial
Pressures
P, i N PN By QMS
Mounted on P T R
Sample Manipulator Nis Spectra A
Positioning }Collect and
Stage b A AN A FANG ] Average
T o T Collect and
Using Parameters (total dwell time) for Spectra at b /\/\ } Average
ALS BL 11.0.2 :

Collect and
- 1000 secs to collect a spectrum that represents 5 ms ~ t; A /\ /\ /\ } Average
at specified delay time after the pulse
- Experiments may be difficult to achieve at Bend Magnet BROGKERIER
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Summary

® High Pressure XPS is a currently active field of research
rapidly expanding
competitive
room for further growth

® To perform these experiments an Undulator Source is desirable
— Smaller Spot Sizes at the Sample
— Increased Intensity
— May allow higher operating pressures

® NSLS-Il Undulator Source May Facilitate New Novel Experiments
that allow the study of catalyst chemical changes on the ms
timescale
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Other Examples of Current Research Using High Pressure XPS
Environmental Applications

UHV Water Water Adsorption On Mineral Surfaces
Surface  Lower Vapor H20/MgO(100
Science Stratosphere Pressures gO(100)
Studies Troposphere ] 4 5
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Advanced Light Source Beamline 11.0.2

H. Bluhm et al, J. Electron Spectrosc. Relat. Phenom. 150 (2006) 86.

KB mirror
Vertical deflection
Horizontal deflection

M212
Bend 1, Bend 2

M211 Spectro slits § o 1 *.* 4

Spectro mirror width, height
shield wall \ mono body Vertical deflection M213
Horizontal deflection _— Bend 1. Bend 2
. Y | end 1, Ben 2 3
mono grating 11— L
& D ‘-—4 7 Rotating
__Tv-—.- R |
s> ?ja;v Micﬂfﬁm Micro siits 1 endstations
== : Vertical deflection " "9
slits Horizontal deflection STXM
mono mirror Speclo
=S5 mirror
electrons 150 I/mm vessel
EPU gap 1200 I/mm
EPU Z

Polarization



