
HAXPES09-Hard X-Ray Photoemission: Where 
are we and what does the future hold?

Chuck Fadley

Convenient definition:
Soft x-rays: < 2 keV, grating monochromators
Hard x-rays: >2 keV, crystal monochromators
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Some early hard x-ray photoemission, CuK @ 8.0 keV—
The first chemical shifts

S. Hagstrom, C. Nordling, and K. Siegbahn, 
Physics Letters 9, 235 (1964).

C.S.F., S.B. Hagstrom, J.M. Hollander, M.P. Klein, D.A. Shirley, 
Science 157, 1571 (1967).



Pianetta, Lindau, Nature 250, 214 (1974)

SPEAR
h

 

= 8,000 eV
CMA, single-channel det.
25 cts./sec

Hard x-ray photoemission with SR: the first experiment



Fast forward to today @ SPring8 and other placesFast forward to today @ SPring8 and other places

Au VB @ h=5.95 keV

E=75 E=75 meVmeV

at 5.95keV

(E/E=79000)

Epass

 

= 200eV
220sec
E=208 meV

E=90meVE=90meV
at 7.94keV

(E/E=88000)

Takata

 

et al., Nuclear Instrum. and Methods. A547, 50 (2005) 
HAXPES09: Ikenaga: (micron)2

 

spot and +/-

 

30 deg, with same resolution and intensity
+ Polarization variation, e.g. via diamond ¼

 

wave plate, new undulators

Epass

 

=50eV
335 meV
Lorentzian

Epass

 

= 200eV
30sec



Tungsten Inelastic Mean Free Path
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4-5x deeper
than normal
x-ray photoem.
(XPS)



 

15-20x deeper
than normal
angle-resolved
photoem.
(ARPES)

C.J. Powell, S. Tanuma: both calculations and TPP-2M up to 30 keV
Plus simulations with the NIST SESSA program up to 20 keV

Typical elements:
70-400 Å

 
@ 10 keV

How much deeper do we
probe at 5-10 keV?

And here? 
Not always 
true that it 
turns up at 

low Ekin

Generally ~ (Ekin

 

)0.75





 



ESRF—Castro et al.   SoleilSoleil—Rueff, Simon et al.
Panaccione

 

et al.--VOLPE
Zegenhagen

 

et al.
HASYLAB—Drube, Felser, Claessen

 

et al.
BESSY---Gorgoi, Schaefers

 

et al.—HIKE
Felser, Fecher

 

et al.

SPring8—Kobayashi et al.
Takata, Shin et al.;
Suga

 

et al.;  TaiwanTaiwan

Hard X-Ray Photoemission (HAXPES,HXPS,...) in the World
HAXPES03, ESRF--Nucl. Inst. and Meth. A, Volume 547, Issue 1, Pages 1-238 (2005)

HAXPES06, SPring8--http://haxpes2006.spring8.or.jp/program.html



U.S. Workshops:
October, 2008: ALS Users Meeting

A. Fedorov, C.F.
HAXPES09 @NSLS, May 20-22, 2009:
J. Woicik, D. Fischer, E. Vescovo, C.F.

??? 
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Hard x-ray photoemission—applications areas
High-k dielectrics, advanced semiconductor structures and materialsreactions

 

at buried 
interfaces, stack profiles, band alignment

(Conti, Drube, Garfunkel, Hughes, Herrera-Gomez, Lysaght, Yanagi, Zaima)
Energy conversion devices: Photovoltaic cells, Fuel-cell electrodes, Li-ion 
batteriesinterfaces

 

and depth-resolved chemical states
(Lysaght, Shikano, Zaima)

Magnetic/spintronic

 

multilayers interfaces, MCD, standing waves, spin resolution?,
(Felser, Gorgoi, Papp/Balke, Ryan, Ueda, Zegenhagen)

Strongly correlated, novel materialssurface

 

vs

 

bulk electronic structure in high TC, 
heavy Fermions, manganites, Heuslers

(Chainani, Drube, Felser, Panaccione, Sawatzky, Suga, Taguchi, Tjeng…)
Oxides, oxide interfaces, 2DEG, superconductivity, “Mottronics”,…

(Claessen, Panaccione, Rumaiz, Sawatzky, Tjeng, Zegenhagen)
Catalysis, environmental, polymer sciencedepth

 

distributions, high-pressure studies
(Bluhm, Bare, Mitchell)

Lanthanide/Actinide systemssurface

 

vs

 

bulk electronic structure
(Joyce)

Atomic, molecular, cluster studiesnon-dipole effects, recoil, many-electron, vibrational, 
rotational excitation

(Lindle, Rosenberg, Simon)
HAXPES/HXPS is already a well-established technique for materials, nanostructure, 

nanomaterial, and device characterization!



Some first MCD data with hard x-ray excitation

S. Ueda et al., Appl. Phys. Exp. 1 (2008) 077003
SPring8-BL15XU

h
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Lindle

 

et al., Hemmers et al., 
Rad. Phys. and Chem. 70, 

123-147 (2004) Guillemin

 

et 
al., Rad. Phys. and Chem. 

73, 311-327 (2005)
D.P. Woodruff, NIMA

 

547 
(2005) 187–195

I. Vartanyants

 

NIMA 547 
(2005) 196–207



Hard x-ray photoemission—instrumentation

Hard x-ray photoemission—basic effects and theory

Beamlines, spectrometers, microscopes—various new directions
(Browning, Cai, Cholewa, Dierker, Drube, Hu, Ikenaga, Lee, Simon, Stefani; Focus, MBS, 

VG Scienta, SPECS)
Detectors?  OK, but 20th

 

century: need individual pixel counting at up to GHz
integrated rates, 1D2D with spin-the holy grail

(Cholewa, instrument vendors)

Inelastic mean free paths, effects of elastic scattering, peak fitting and analysis of ARXPS
(Herrera-Gomez, Powell,  Zaima,…)

Cross sections, asymmetry parameters, non-dipole effects
(Lindle, Yoshikawa, Zegenhagen,…)

Anderson impurity model for core/valence levels
(Chainani, Sawatzky, Suga, Taguchi,…) 

One-step ARPES theory with matrix elements, relativistic effects, spin resol.
(Ebert, Rehr)

Phonons!  In recoil, in ARPES (UPS-band limitXPS-DOS limit), in inelastic 
scatteringmore

 

development needed
(Ebert, Kayanuma, Papp, Suga, Takata)



Hard x-ray photoemission—plusses and minusses
•Plusses

•More bulk sensitive spectra  a versatile 
tool for any new material, multilayer 

nanostructure

•Inelastic background less important & 
Augers more widely spread, less overlap

•Easier quantitative analysis via core 
spectra, but intensity drops

for non-grazing incidencerotateable

 
analyzer or wide-angle lens

•Less radiation damage?

•Easier interpretation of ARXPS data

 



 
surface and

 

bulk information

•New “bulk fingerprint”

 

effects seen in both 
core and valence spectra

•3d “bulk”

 

band mapping ARPES capability 
with cryocooling—How high in energy?

-And/Or-
•Direct DOS info. at highest energies and 

temperatures

• Strong standing wave effects for depth-

 
resolved properties

•Hard x-ray photoelectron diffraction 
promising:

 

dopants

 

lattice

 

distortions

Minusses

•

 

Cross sections low, need special 
undulatorbeamline/spectrometer 

combinations

•Resolution not as good as VUV/SX,
but 50 meV, maybe lower, good enough

•Recoil energy limits resolution, esp. for 
lighter elements, complex systematics, 

depending on local bond distances/phonon 
frequencies

•High n, low-

 

cross section components
•strongly favored, but they can be more 

involved in conductivity

•Intensity calculations must allow for 
photon wave vector, 

other non-dipole effects

•Phonon effects reduce capability for 
ARPES at higher energies/temperatures

•Resonant measurements more difficult, 
depends on monochromator

 

design
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Hard x-ray photoemission--Quantitative analysis of peak intensities
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theoretical cross sections:La0.7
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Quantitative analysis of peak intensities using theoretical cross 
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= 7700 eV

Core-level cross sections (non-dipole 
corrected) work very well,
if many-electron effects included
More accurate “bulk”

 

or buried layer
quantitative analysis, but be careful of 
photoelectron diffraction effects
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Hard x-ray photoemission—plusses and minusses
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•More bulk sensitive spectra  a versatile 
tool for any new material, multilayer 

nanostructure
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involved in conductivity

•Intensity calculations must allow for 
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•Resonant measurements more difficult, 
depends on monochromator

 

design



Effect of Grazing Incidence of XEffect of Grazing Incidence of X--raysrays
5

Takata
 

et al.
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20-30°

Inner potential
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500-1000 eV

Simplest interpretation:
Average emission depth = inelastic

 

sintakeoff
How valid?

E.g.: A. Jablonski

 

and C. J. Powell, 
J. Vac. Sci. Tech. A 21, 274 (2003):
 Mean Emission Depth (MED)

more relevant than inelastic

Varying surface sensitivity for lower electron 
takeoff angles—ARXPS & ARHXPS

f(scat

 

)

takeoff
down
to 5-10°



Ekin

 


 

10,000 eV

Approx. constant analyzer transmission
Simpler analysis

Cleaner bulk &

 

surface distinction
C.S.F., Nucl. Inst. & Meth. A 547, 24 (2005)

Kover, Werner, Drube, et al., Surf. & Int. Anal. 38, 569 (2006)

PD modulations
weaker

Surface inelastic scatt.
Surface 
inelastic scatt.



ARHXPS for Si 1s photoelectron spectra from 
NiGe(12-nm)/SiO2

 

(12-nm)/Si(100)

Unpublished data courtesy of H. Kondo, Nagoya University
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Angle-Resolved  Hard X-ray Photoemission Spectroscopy 
（Evaluation of Depth Probing）
SiO2

 

(4nm)/Si spectra 
TOA

 

Dependence of Si

 

Oxide

An oxide component increase is confirmed at the 
surface！
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Hard x-ray photoemission—plusses and minusses
•Plusses

•More bulk sensitive spectra  a versatile 
tool for any new material, multilayer 

nanostructure

•Inelastic background less important & 
Augers more widely spread, less overlap

•Easier quantitative analysis via core 
spectra, but intensity drops

for non-grazing incidence

•Less radiation damage?

•Easier interpretation of ARXPS data

 



 
surface and

 

bulk information

•New “bulk fingerprint”

 

screening effects 
seen in both core and valence spectra

•3d “bulk”

 

band mapping ARPES capability 
with cryocooling—How high in energy?

-And/Or-
•Direct DOS info. at highest energies and 

temperatures

• Strong standing wave effects for depth-

 
resolved properties

•Hard x-ray photoelectron diffraction 
promising: dopants, lattice distortions

Minusses

•

 

Cross sections low, need special 
undulatorbeamline/spectrometer 

combinations

•Resolution not as good as VUV/SX,
but 50 meV, maybe lower, good enough

•Recoil energy limits resolution, esp. for 
lighter elements, complex systematics, 

depending on local bond distances/phonon 
frequencies

•High n, low-

 

cross section components
•strongly favored, but they can be more 

involved in conductivity

•Intensity calculations must allow for 
photon wave vector, 

other non-dipole effects

•Phonon effects reduce capability for 
ARPES at higher energies/temperatures

•Resonant measurements more difficult, 
depends on monochromator

 

design



23/28

La1-x
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Cr0.02

 

O3 High Tc

 

cuprates

Horiba et al., 
PRL 93

 

236401 (2004)

Taguchi et al., 
PRB 71

 

155102 (2005)

Kamakura et al.,
EPL 68 557 (2004)

Taguchi et al., 
PRL 95

 

177002 (2005)
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Electronic Structure of Strained Manganite

 

Thin Films with Room Temperature
Ferromagnetism Investigated by Hard X-ray Photoemission Spectroscopy:

La0.85

 

Ba0.15

 

MnO3

5.95 keV Strain/Mag

 
netism-

 
associated
screening 
feature

Tanaka et al., Spring8, Phys. Rev. B 73,

 

094403 (2006)
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Hard x-ray photoemission—plusses and minusses
•Plusses

•More bulk sensitive spectra  a versatile 
tool for any new material, multilayer 

nanostructure

•Inelastic background less important & 
Augers more widely spread, less overlap

•Easier quantitative analysis via core 
spectra, but intensity drops
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•Less radiation damage?
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involved in conductivity
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Valence-Band Photoemission at High Energy--
What & Where is the “XPS Limit”?:

Hussain

 

et al., Phys.
Rev. B 22, 3750 (‘80)

Additional effects at higher energies:
• non-dipole--the photon momentum
• angular acceptanceB.Z. averaging
• lattice recoil, phonon creationmore

B.Z. averaging, Debye-Waller factor = W(T)  exp[-

 

(kf)2 <u2(T)>]
 exp[-C1 (kf)2T/(mD

2)]  exp(-C2

 

Ekin

 

T) 
….the “XPS limit”
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B. Wannberg



W(110)-Raw data, Temperature Dependence
 5954 eV
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Density of states 
(“XPS limit”) + x-ray 
photoelectron 
diffraction*
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poster)

Ueda, Kobayashi, et al., SPring8



No vibration

K.A. Thompson and C.F.
J. Elect. Spect. 33, 29 (‘84)

Photoelectron diffraction with hard x-ray excitation:
1000 eV10,000 eV, the first theoretical study

Qualitative expectations:
Forward scattering peak strengths f(0) 

 
constant

Overall scattering cross section 
 

= fd
 

decreases 



PHOTOELECTRON DIFFRACTION

The scattering of
photoelectrons from 
localized sources can 
be described  in real 
space (multiple 
scattering cluster) and 
reciprocal space 
(dynamical theory of 
electron diffraction)

PHOTOELECTRON DIFFRACTION

The scattering of
photoelectrons from 
localized sources can 
be described  in real 
space (multiple 
scattering cluster) and 
reciprocal space 
(dynamical theory of 
electron diffraction)

A.

 

Winkelmann, J. Garcia de Abajo, C.F.,
B.

 

New Journal of Physics 10

 

(2008) 113002
(poster in HAXPES09)
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Hard X‐Ray ARPES: W(110), h
 

= 5945 eV
SPring8, BL15XU, Ueda et al.
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= 5,954 eV, T = 30K: Comparison to one-step theory, matrix elements

(a) Raw
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phonon-

 
induced 
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intensity

Expt.-Ueda, Kobayashi, 
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Data analysis-Papp, Gray, 
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Debye-Waller Factor =

More than 

50% band 

sensitiv
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Debye-Waller Factor =

More than 

50% band 

sensitiv
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W

Debye-Waller Factor =

Debye-Waller Factor =

1.9 keV

5.3 keV

W an optimal case, but 
for 37 elements*, 1-3 keV
OK, maybe higher with better
DOS correction procedures 
and theory of phonons in 
ARPES

Approximate recoil-free fractionfraction
 

DTs

Plucinski



Hard x-ray photoemission—plusses and minusses
•Plusses

•More bulk sensitive spectra  a versatile 
tool for any new material, multilayer 

nanostructure

•Inelastic background less important & 
Augers more widely spread, less overlap

•Easier quantitative analysis via core 
spectra, but intensity drops

for non-grazing incidence

•Less radiation damage?

•Easier interpretation of ARXPS data

 



 
surface and

 

bulk information

•New “bulk fingerprint”

 

effects seen in both 
core and valence spectra

•3d “bulk”

 

band mapping ARPES capability 
with cryocooling—How high in energy?

-And/Or-
•Direct DOS info. at highest energies and 

temperatures

• Strong standing wave effects for depth-

 
resolved properties

•Hard x-ray photoelectron diffraction 
promising: dopants, lattice distortions

Minusses

•Cross sections low, need special 
undulatorbeamline/spectrometer 

combinations—several solutions1 
micron, and 10 meV

•Resolution not as good as VUV/SX,
but 50 meV, maybe lower, good enough

•Recoil energy limits resolution, esp. for 
lighter elements, complex systematics, 

depending on local bond distances/phonon 
frequenciesDoppler

 

spectroscopy?

•High n, low-

 

cross section components
•strongly favored, but they can be more 

involved in conductivity

•Intensity calculations must allow for 
photon wave vector, 

other non-dipole effects

•Phonon effects reduce capability for 
ARPES at higher energies/temperatures

•Resonant measurements more difficult, 
depends on monochromator

 

design



Recoil effects in PES:
C 1s core level spectra of graphite

Y. Takata et al., PRB 75, 233404 (2007) 

Recoil effects in PES:
C 1s core level spectra of graphite

Y. Takata et al., PRB 75, 233404 (2007) 
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With increase of h (KE)
☆increase of BE
★KE loss
★asymmetric broadening

★ not observed in Au
★ not due to semimetallic

character
★ not due to bulk vs surface 

but
★ due to recoil effect !

light element 
high energy photoelectron
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et al.)  59507940
Approximate recoil-free fraction = Debye-Waller factor--Graphite
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50% @ 
470 keV

D

 

= 

W(T)  exp[-(kf)2 <u2(T)>]

Plucinski Little change with T at fixed h?



50% @ 
1.9 keV

870 eV

 

(Takata

 

et al.)                 5950                    7940

Approximate recoil-free fraction = Debye-Waller factor--Diamond

Plucinski Also little change with T?



Hard x-ray photoemission—plusses and minusses
•Plusses

•More bulk sensitive spectra  a versatile 
tool for any new material, multilayer 

nanostructure

•Inelastic background less important & 
Augers more widely spread, less overlap

•Easier quantitative analysis via core 
spectra, but intensity drops

for non-grazing incidence

•Less radiation damage?

•Easier interpretation of ARXPS data

 



 
surface and

 

bulk information

•New “bulk fingerprint”

 

effects seen in both 
core and valence spectra

•3d “bulk”

 

band mapping ARPES capability 
with cryocooling—How high in energy?

-And/Or-
•Direct DOS info. at highest energies and 

temperatures

•Hard x-ray photoelectron diffraction 
promising: dopants, lattice distortions

•Strong reflectivity and standing wave 
effects for depth-resolved properties

Minusses

•Cross sections low, need special 
undulatorbeamline/spectrometer 

combinations—several solutions1 
micron, and 10 meV

•Resolution not as good as VUV/SX,
but 50 meV, maybe lower, good enough

•Recoil energy limits resolution, esp. for 
lighter elements, complex systematics, 

depending on local bond distances/phonon 
frequenciesDoppler

 

spectroscopy?

•High n, low-

 

cross section components
•strongly favored, but they can be more 

involved in conductivity

•Intensity calculations must allow for 
photon wave vector, 

other non-dipole effects

•Phonon effects reduce capability for 
ARPES at higher energies/temperatures

•Resonant measurements more difficult, 
depends on monochromator

 

design



No vibration

K.A. Thompson and C.F.
J. Elect. Spect. 33, 29 (‘84)

Photoelectron diffraction with hard x-ray excitation:
1000 eV10,000 eV, the first theoretical study

Qualitative expectations:
Forward scattering peak strengths f(0) 

 
constant

Overall scattering cross section 
 

= fd
 

decreases 



PHOTOELECTRON DIFFRACTION

The scattering of
photoelectrons from 
localized sources can 
be described  in real 
space (multiple 
scattering cluster) and 
reciprocal space 
(dynamical theory of 
electron diffraction)

PHOTOELECTRON DIFFRACTION

The scattering of
photoelectrons from 
localized sources can 
be described  in real 
space (multiple 
scattering cluster) and 
reciprocal space 
(dynamical theory of 
electron diffraction)

Soft x-ray excitation          Hard x-ray excitation

A. Winkelmann

 

et al, New J. Phys 10

 

(2008) 113002



A. Winkelmann

 

et al, NJP 10

 

(2008) 113002

XPD from Soft to Hard X-ray:
What can be expected from 0.5 to 20 keV? 



Hard x-ray photoelectron diffraction--Theory:
Sensitivity to lattice distortions and atomic site type?

Si(111)-6 keV: Impurity atom on lattice site (Si) vs. tetrahedral interstitial (T)

A. Winkelman, J. Garcia de Abajo, 
MPI Halle, CF, New Journal of 

Physics 10

 

(2008) 113002 Missing Kikuchi bands-->”forbidden reflections”

Added option: Standing waves for x-rays in plus XPD
standing waves for electrons out?



Some first MCD data with hard x-ray excitation

S. Ueda et al., Appl. Phys. Exp. 1 (2008) 077003
SPring8-BL15XU

 Combine with HXPD to yield site-specific magnetization?

h



Hard x-ray photoemission—plusses and minusses
•Plusses

•More bulk sensitive spectra  a versatile 
tool for any new material, multilayer 

nanostructure

•Inelastic background less important & 
Augers more widely spread, less overlap

•Easier quantitative analysis via core 
spectra, but intensity drops

for non-grazing incidence

•Less radiation damage?

•Easier interpretation of ARXPS data

 



 
surface and

 

bulk information

•New “bulk fingerprint”

 

effects seen in both 
core and valence spectra

•3d “bulk”

 

band mapping ARPES capability 
with cryocooling—How high in energy?

-And/Or-
•Direct DOS info. at highest energies and 

temperatures

•Hard x-ray photoelectron diffraction 
promising: dopants, lattice distortions

• Strong reflectivity and standing wave 
effects for depth-resolved properties

Minusses

•Cross sections low, need special 
undulatorbeamline/spectrometer 

combinations—several solutions1 
micron, and 10 meV

•Resolution not as good as VUV/SX,
but 50 meV, maybe lower, good enough

•Recoil energy limits resolution, esp. for 
lighter elements, complex systematics, 

depending on local bond distances/phonon 
frequenciesDoppler

 

spectroscopy?

•High n, low-

 

cross section components
•strongly favored, but they can be more 

involved in conductivity

•Intensity calculations must allow for 
photon wave vector, 

other non-dipole effects

•Phonon effects reduce capability for 
ARPES at higher energies/temperatures

•Resonant measurements more difficult, 
depends on monochromator

 

design



Standing wave formation in reflection from a surface,
or single-crystal Bragg planes+, or a multilayer mirror

Incident Reflected 

SW (|E2|)

 

=
x

 

/2sininc

+Standing waves via Bragg reflection of hard x-rays: Batterman, Phys. Rev A 133, 759 (1964)

R1

I(hν ) 1 R(hν ) 2 R(hν ) f cos[φ(hν ) 2πP ]   

inc inc inc incI(θ ) 1 R(θ ) 2 R(θ ) f cos[φ(θ ) 2πP ]   
 Rocking curve:

 Energy scan:

with: f = coherent fraction of atoms, P = phase of coherent-atom position
 Phase scan with wedge-shaped sample (“Swedge”

 

method):

% modulation 
100 x 4R

XMCD—Kim, Kortright,
PRL 86, 1347 (2001)

ee-- h
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Site-specific valence electronic structure of SrTiO3
S. Thieß, T.-L. Lee, F. Bottin, B. Cowie
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 Incidence
Angle @
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6 keV
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Depth-resolved composition from simulations of the 
rocking curves

SiO2 15 Å

TiNOx 20 Å

TiN 77Å

10 Å diffusion

Si 25.5 Å

Si substrate
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MoSi2 4.5 Å
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2 Å diffusion

69 X
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Rocking curve for a TiN/Si
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5.9 keV



Reflected 

SW (|E2|)

 

=
x

 

/2sininc

+Standing waves via Bragg reflection of hard x-rays: Batterman, Phys. Rev A 133, 759 (1964)

R1

I(hν ) 1 R(hν ) 2 R(hν ) f cos[φ(hν ) 2πP ]   

inc inc inc incI(θ ) 1 R(θ ) 2 R(θ ) f cos[φ(θ ) 2πP ]   
 Rocking curve:

 Energy scan:

with: f = coherent fraction of atoms, P = phase of coherent-atom position
 Phase scan with wedge-shaped sample (“Swedge”

 

method):

% modulation 
100 x 4R

XMCD—Kim, Kortright,
PRL 86, 1347 (2001)

Incident

ee-- h

Standing wave formation in reflection from a surface,
or single-crystal Bragg planes+, or a multilayer mirror



Probing Buried Interfaces:
The Standing Wave-Wedge 

(“Swedge”) Method
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= 4 keV

Fe 2p3/2

F. Schonbohm, U.Berges, S.Döring, M. Gorgoi, C. Westphal,
D. Buergler, C. Schneider, C. Papp, B. Balke, C.F...



Papp, Balke, 
Ueda, 

Kobayashi 
et al., 

SPring8, 
BLXU15

MgO/Fe depth dependent densities of states info. at 0.9 keV and 5.9 keV

9.592/6 e- =
1.598/e-

1.4494/2 e- =
0.7247/e-

Fe cross sections @ 1 keV

O cross sections @ 1 keV

1.065/6 e- =
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Hard x-ray photoemission—plusses and minusses
•Plusses

•More bulk sensitive spectra  a versatile 
tool for any new material, multilayer 

nanostructure

•Inelastic background less important & 
Augers more widely spread, less overlap

•Easier quantitative analysis via core 
spectra, but intensity drops

for non-grazing incidence

•Less radiation damage?

•Easier interpretation of ARXPS data

 



 
surface and

 

bulk information

•New “bulk fingerprint”

 

effects seen in both 
core and valence spectra

•3d “bulk”

 

band mapping ARPES capability 
with cryocooling—How high in energy?

-And/Or-
•Direct DOS info. at highest energies and 

temperatures

• Strong reflectivity and standing wave 
effects for depth-resolved properties

•Hard x-ray photoelectron diffraction 
promising: dopants, lattice distortions

Minusses

•Cross sections low, need special 
undulatorbeamline/spectrometer 

combinations—several solutions1 
micron, and 10 meV

•Resolution not as good as VUV/SX,
but 50 meV, maybe lower, good enough

•Recoil energy limits resolution, esp. for 
lighter elements, complex systematics, 

depending on local bond distances/phonon 
frequenciesDoppler

 

spectroscopy?

•High n, low-

 

cross section components
•strongly favored, but they can be more 

involved in conductivity

•Intensity calculations must allow for 
photon wave vector, 

other non-dipole effects

•Phonon effects reduce capability for 
ARPES at higher energies/temperatures

•Resonant measurements more difficult, but 
depends on monochromator

 

design
being done (Drube)



Hard x-ray photoemission—applications areas
High-k dielectrics, advanced semiconductor structures and materialsreactions

 

at buried 
interfaces, stack profiles, band alignment

(Conti, Drube, Garfunkel, Hughes, Herrera-Gomez, Lysaght, Yanagi, Zaima)
Energy conversion devices: Photovoltaic cells, Fuel-cell electrodes, Li-ion 
batteriesinterfaces

 

and depth-resolved chemical states
(Lysaght, Shikano, Zaima)

Magnetic/spintronic

 

multilayers interfaces, MCD, standing waves, spin resolution?,
(Felser, Gorgoi, Papp/Balke, Ryan, Ueda, Zegenhagen)

Strongly correlated, novel materialssurface

 

vs

 

bulk electronic structure in high TC, 
heavy Fermions, manganites, Heuslers

(Chainani, Drube, Felser, Panaccione, Sawatzky, Suga, Taguchi, Tjeng…)
Oxides, oxide interfaces, 2DEG, superconductivity, “Mottronics”,…

(Claessen, Panaccione, Rumaiz, Sawatzky, Tjeng, Zegenhagen)
Catalysis, environmental, polymer sciencedepth

 

distributions, high-pressure studies
(Bluhm, Bare, Mitchell)

Lanthanide/Actinide systemssurface

 

vs

 

bulk electronic structure
(Joyce)

Atomic, molecular, cluster studiesnon-dipole effects, recoil, many-electron, vibrational, 
rotational excitation

(Lindle, Rosenberg, Simon)
HAXPES/HXPS is already a well-established technique for materials, nanostructure, 

nanomaterial, and device characterization!



Hard x-ray photoemission—instrumentation

Hard x-ray photoemission—basic effects and theory

Beamlines, spectrometers, microscopes—various new directions
(Browning, Cai, Cholewa, Dierker, Drube, Hu, Ikenaga, Lee, Simon, Stefani; Focus, MBS, 

VG Scienta, SPECS)
Detectors?  OK, but 20th

 

century: need individual pixel counting at up to GHz
integrated rates, 1D2D with spin-the holy grail

(Cholewa, instrument vendors)

Inelastic mean free paths, effects of elastic scattering, peak fitting and analysis of ARXPS
(Herrera-Gomez, Powell,  Zaima,…)

Cross sections, asymmetry parameters, non-dipole effects
(Lindle, Yoshikawa, Zegenhagen,…)

Anderson impurity model for core/valence levels
(Chainani, Sawatzky, Suga, Taguchi,…) 

One-step ARPES theory with matrix elements, relativistic effects, spin resol.
(Ebert, Rehr)

Phonons!  In recoil, in ARPES (UPS-band limitXPS-DOS limit), in inelastic 
scatteringmore

 

development needed
(Ebert, Kayanuma, Papp, Suga, Takata)
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